Distortion of boundary sets under inner functions (II)

José L. Fernández*, Domingo Pestana* and José M. Rodríguez**

(*) Universidad Autónoma de Madrid
and
(**) Universidad Carlos III de Madrid

Version date: July 9, 1993
1. Introduction.

An inner function is a bounded holomorphic function from the unit ball \mathbb{B}_n of \mathbb{C}^n into the unit disk Δ of the complex plane such that the radial boundary values have modulus 1 almost everywhere. If E is a non empty Borel subset of $\partial \Delta$, we denote by $f^{-1}(E)$ the following subset of the unit sphere \mathbb{S}_n of \mathbb{C}^n

$$f^{-1}(E) = \{ \xi \in \mathbb{S}_n : \lim_{r \to 1} f(r \xi) \text{ exist and belongs to } E \}.$$

The classical lemma of Löwner, see e.g. [R, p.405], asserts that inner functions f, with $f(0) = 0$, are measure preserving transformations when viewed as mappings from \mathbb{S}_n to $\partial \Delta$, i.e. if E is a Borel subset of $\partial \Delta$ then $|f^{-1}(E)| = |E|$, where in each case $| \cdot |$ means the corresponding normalized Lebesgue measure.

In this paper we extend this result to fractional dimensions as follows:

Theorem 1. If f is inner in the unit disk Δ, $f(0) = 0$, and E is a Borel subset of $\partial \Delta$, we have:

$$\text{cap}_\alpha(f^{-1}(E)) \geq \text{cap}_\alpha(E), \quad 0 \leq \alpha < 1.$$

Moreover, if E is any Borel subset of $\partial \Delta$ with $\text{cap}_\alpha(E) > 0$, equality holds if and only if either f is a rotation or $\text{cap}_\alpha(E) = \text{cap}_\alpha(\partial \Delta)$.

Moreover, it is well known, see [N], that if f is not a rotation then f is ergodic, i.e., there are no nontrivial sets A, with $f^{-1}A = A$ except for a set of Lebesgue measure zero. This also has a fractional dimensional parallel.

Corollary. With the hypotheses of Theorem 1, if f is not a rotation and if the symmetric difference between E and $f^{-1}(E)$ has zero α-capacity, then either $\text{cap}_\alpha(E) = 0$ or $\text{cap}_\alpha(E) = \text{cap}_\alpha(\partial \Delta)$.

Theorem 2. If f is inner in the unit ball of \mathbb{C}^n, $f(0) = 0$, and E is a Borel subset of $\partial \Delta$, we have:

$$\text{cap}_{2n-2+\alpha}(f^{-1}(E)) \geq K(n, \alpha)^{-1} \text{cap}_\alpha(E), \quad 0 < \alpha < 1,$$

and

$$\frac{1}{\text{cap}_{2n-2}(f^{-1}(E))} \leq 1 + (2n - 2) \log \frac{1}{\text{cap}_0(E)}, \quad (n > 1).$$

Corollary. In particular, for any inner function f, we have that

$$\text{Dim}(f^{-1}(E)) \geq 2n - 2 + \text{Dim}(E),$$

where Dim denotes Hausdorff dimension.
Here cap_α and cap_0 denote, respectively, α-dimensional Riesz capacity and logarithmic capacity. We refer to [C], [KS] and [L] for definitions and basic background on capacity.

For background and some applications of this results we refer to [FP] where it is shown that Theorem 1 holds with some constants depending on α.

The outline of this paper is as follows: In Section 2 we obtain an integral expression for the α-energy that is used in Section 3, where theorems 1 and 2 are proved. Section 4 contains some further results for the case $n = 1$. In Section 5, we prove an analogous distortion theorem, with Hausdorff measures replacing capacities. Section 6 contains an open question.

We would like to thank José Galé and Francisco Ruiz-Blasco for some helpful conversations concerning the energy functional. Also, we would like to thank David Hamilton for suggesting that the right constant in Theorem 1 is 1 (see [H]).

2. An integral expression for the α-energy.

In this section we obtain an expression of the α-energy of a signed measure μ in Σ_{N-1} (the unit sphere of \mathbb{R}^N) as an L^2-norm of its Poisson extension. This approach is due to Beurling [B].

If μ is a signed measure on Σ_{N-1}, and $0 \leq \alpha < N-1$, then the α-energy $I_\alpha(\mu)$ of μ is defined as

$$I_\alpha(\mu) = \iint_{\Sigma_{N-1} \times \Sigma_{N-1}} \Phi_\alpha(|x-y|) \, d\mu(x) \, d\mu(y),$$

where

$$\Phi_\alpha(t) = \begin{cases} \log \frac{1}{t}, & \text{if } \alpha = 0, \\ \frac{1}{t^\alpha}, & \text{if } 0 < \alpha < N-1. \end{cases}$$

Recall that if E is a closed subset of Σ_{N-1}, then

$$(\text{cap}_\alpha(E))^{-1} = \inf \{I_\alpha(\mu) : \mu \text{ probability supported on } E\},$$

for $0 < \alpha < N-1$,

$$\log \frac{1}{\text{cap}_0(E)} = \inf \{I_0(\mu) : \mu \text{ probability supported on } E\},$$

and that the infimum is attained by a unique probability μ_c which is called the equilibrium distribution on E.

If E is any Borel subset of Σ_{N-1}, then the α-capacity of E is defined as
\[
\text{cap}_\alpha(E) = \sup\{\text{cap}_\alpha(K) : K \subset E, \ K \text{ compact}\}.
\]
We recall Choquet’s theorem that all Borel sets are \textit{capacitables}, \textit{i.e.}
\[
\text{cap}_\alpha(E) = \inf\{\text{cap}_\alpha(O) : E \subset O, \ O \text{ open}\}.
\]
As we shall remark later on, for a general Borel set E of Σ_{N-1}, one has
\[
\frac{1}{\text{cap}_\alpha(E)} = \inf\{I_\alpha(\mu) : \mu \text{ probability, } \mu(E) = 1\},
\]
and analogously for the logarithmic capacity.

We first need to obtain the expansion of the integral kernel Φ_α in terms of the spherical harmonics. We refer to [SW, chap.IV] for details about spherical harmonics; we shall follow their notations.

Let \mathcal{H}_k be the real vector space of the spherical harmonics of degree k in \mathbb{R}^N ($N > 1$). If a_k is the dimension of \mathcal{H}_k, we have
\[
a_0 = 1, \quad a_1 = N, \quad a_k = \frac{N + 2k - 2}{k} \binom{N + k - 3}{k - 1} \quad \text{[SW, p.145].}
\]
If Σ_{N-1} denotes the unit sphere of \mathbb{R}^N, the space $L^2(\Sigma_{N-1}, d\xi)$ can be decomposed as
\[
L^2(\Sigma_{N-1}, d\xi) = \bigoplus_{k=0}^{\infty} \mathcal{H}_k,
\]
where $d\xi$ is the usual Lebesgue measure (not normalized).

If ξ, η belongs to Σ_{N-1}, $Z^k_\eta(\xi)$ will denote the zonal harmonic of degree k with pole η, and if $\{Y^k_1, \ldots, Y^k_{a_k}\}$ is any orthonormal basis of \mathcal{H}_k, we have
\[
Z^k_\eta(\xi) = \sum_{m=1}^{a_k} Y^k_m(\xi)Y^k_m(\eta) = Z^k_\xi(\eta) \quad \text{[SW, p.143].}
\]
The zonal harmonics can be expressed in terms of the ultraspherical (or Gegenbauer) polynomials P^λ_k which are defined by the formula
\[
(1 - 2rt + r^2)^{-\lambda} = \sum_{k=0}^{\infty} P^\lambda_k(t)r^k,
\]
where $|r| < 1$, $|t| \leq 1$ and $\lambda > 0$.
We have [SW, p.149], if $N > 2$,
\[Z^k_\eta(\xi) = C_{k,N} P^{(N-2)/2}_k(\xi \cdot \eta). \]

It is easy to compute the constants $C_{k,N}$. First, if ω_{N-1} denotes the Lebesgue measure of Σ_{N-1}, then
\[\|Z^k_\eta\|_2 = \frac{a_k}{\omega_{N-1}} \]
while, on the other hand,
\[\frac{a_k}{\omega_{N-1}} = C_{k,N} \int_{\Sigma_{N-1}} |P^{(N-2)/2}_k(\xi \cdot \eta)|^2 d\xi \]
\[= C_{k,N} \omega_{N-2} \int_{-1}^1 |P^{(N-2)/2}_k(t)|^2 (1 - t^2)^{(N-3)/2} dt. \]

Now, the polynomials $P^{(N-2)/2}_k(t)$ form an orthogonal basis of
\[L^2([-1, 1], (1 - t^2)^{(N-3)/2} dt) \]
[SW, p.151], [AS, p.774], and
\[\|P^{(N-2)/2}_k\|_2^2 = \frac{\pi 2^{4-N} \Gamma(k + N - 2)}{k! (2k + N - 2) \Gamma\left(\frac{N - 2}{2}\right)^2} \]
[AS, p.774],
where $\Gamma(\cdot)$ denotes the Euler’s Gamma function, and, therefore
\[C_{k,N}^2 = \frac{a_k}{\omega_{N-1} \omega_{N-2}} \|P^{(N-2)/2}_k\|_2^{-2} = \frac{(N + 2k - 2)^2}{16 \pi^N} \Gamma\left(\frac{N - 2}{2}\right)^2. \]

Hence
\[C_{k,N} = \frac{N + 2k - 2}{4 \pi^{N/2} \Gamma\left(\frac{N - 2}{2}\right)}, \]
and
\[Z^k_\eta(\xi) = \frac{N + 2k - 2}{4 \pi^{N/2} \Gamma\left(\frac{N - 2}{2}\right)} P^{(N-2)/2}_k(\xi \cdot \eta). \]

The case $N = 2$ is slightly different. In this case we can take $P^0_k = T_k$, the Chebyshev’s polynomials defined in $[-1, 1]$ by
\[T_k(\cos \theta) = \cos k\theta. \]

It is known that these polynomials form an orthogonal basis of
\[L^2([-1, 1], (1 - t^2)^{-1/2} dt). \]
In this particular case, if \(\xi = e^{i\theta}, \eta = e^{i\psi}, \) then \(\xi \cdot \eta = \cos(\theta - \psi), \) and
\[
Z^k_\eta(\xi) = \frac{1}{\pi} \cos k(\theta - \psi) = \frac{1}{\pi} T_k(\cos(\theta - \psi)) = \frac{1}{\pi} P^0_k(\xi \cdot \eta), \quad k = 1, 2, \ldots ,
\]
\[
Z^0_\eta(\xi) = \frac{1}{2\pi} = \frac{1}{2\pi} P^0(\xi \cdot \eta).
\]
Therefore,
\[
C_{k,2} = \begin{cases}
\frac{1}{\pi}, & \text{if } k > 0, \\
\frac{1}{2\pi}, & \text{if } k = 0.
\end{cases}
\]

We can now write down the expansion of the kernel \(\Phi_\alpha(|x - y|) \) in a Fourier series of Gegenbauer’s polynomials. Fix, first, \(\alpha, \) with \(0 < \alpha < N - 1. \) If we denote by \(g(t) \) the function
\[
g(t) = \left(\frac{1}{2 - 2t} \right)^{\alpha/2},
\]
then we can express the kernel \(\Phi_\alpha \) in terms of \(g \) as
\[
\Phi_\alpha(|\xi - \eta|) = \Phi_\alpha(\sqrt{|\xi|^2 - 2\xi \cdot \eta + |\eta|^2}) = g(\xi \cdot \eta).
\]
Now, develop \(g(t) \) as a Fourier series
\[
g(t) = \sum_{k=0}^{\infty} g_k P^{(N-2)/2}_k(t), \quad \text{where} \quad g_k \|P^{(N-2)/2}_k\|_2^2 = \langle g, P^{(N-2)/2}_k \rangle,
\]
and conclude
\[
(1) \quad \Phi_\alpha(|\xi - \eta|) = g(\xi \cdot \eta) = \sum_{k=0}^{\infty} g^k Z^k_\eta(\xi),
\]
where \(g^k C_{k,N} = g_k. \)

Hereafter \(F \) will denote the usual hypergeometric function
\[
F(a, b; c; t) = \sum_{m=0}^{\infty} \frac{(a)_m(b)_m t^m}{(c)_m m!},
\]
where
\[
(u)_m = u(u + 1) \ldots (u + m - 1) = \frac{\Gamma(u + m)}{\Gamma(u)}.
\]
The polynomials \(P^{(N-2)/2}_k \) can be expressed in terms of \(F \) [AS, p.779].
If \(N > 2 \),
\[
P_k^{(N-2)/2}(t) = \binom{k + N - 3}{k} F(-k, k + N - 2; (N - 1)/2; (1 - t)/2).
\]

Then,
\[
\langle g, P_k^{(N-2)/2} \rangle = \binom{k + N - 3}{k} \int_{-1}^{1} s^{-1+(N-1-\alpha)/2} (1 - s)^{-1+(N-1)/2} \cdot (2 - 2t)^{-\alpha/2} (1 - t^2)^{(N-3)/2} \, dt.
\]

Therefore
\[
\langle g, P_k^{(N-2)/2} \rangle = 2^{N-2-\alpha} \binom{k + N - 3}{k} \int_{0}^{1} s^{-1+(N-1-\alpha)/2} (1 - s)^{-1+(N-1)/2} \cdot F(-k, k + N - 2; (N - 1)/2; 1 - s) \, ds.
\]

Using the relationship
\[
P_k^{(N-2)/2}(-t) = (-1)^k P_k^{(N-2)/2}(t), \quad \text{[SW, p.149], [AS, p.775]},
\]
we have
\[
\langle g, P_k^{(N-2)/2} \rangle = 2^{N-2-\alpha} \binom{k + N - 3}{k} (-1)^k \int_{0}^{1} s^{-1+(N-1-\alpha)/2} (1 - s)^{-1+(N-1)/2} \cdot F(-k, k + N - 2; (N - 1)/2; 1 - s) \, ds.
\]

Term by term integration of the series defining \(F \) gives
\[
\int_{0}^{1} s^{a-1}(1 - s)^{b-1} F(-k, c; b; 1 - s) \, ds = \beta(a, b; 1 - s) \, ds = \beta(a, b; 1 - s),
\]
where \(\beta(\cdot, \cdot) \) is the Euler’s Beta function.

Moreover, it is easy to see that ([AS, p.556])
\[
F(-k, c; a + b; 1) = \frac{\Gamma(a + b) \Gamma(a + b - c + k)}{\Gamma(a + b + k) \Gamma(a + b - c)}
\]
\[
= \frac{\Gamma(a + b)}{\Gamma(a + b + k)} (-1)^k \frac{\Gamma(1 + c - a - b)}{\Gamma(1 + c - a - b - k)} ,
\]
and so
\[
(-1)^k \int_{0}^{1} s^{a-1}(1 - s)^{b-1} F(-k, c; b; 1 - s) \, ds = \frac{\Gamma(a) \Gamma(b) \Gamma(1 + c - a - b)}{\Gamma(a + b + k) \Gamma(1 + c - a - b - k)} .
\]
This gives

\[\langle g, P_k^{(N-2)/2} \rangle = 2^{N-\alpha} \binom{k + N - 3}{k} \frac{\Gamma \left(\frac{N - 1 - \alpha}{2} \right) \Gamma \left(\frac{N - 1}{2} \right) \Gamma \left(k + \frac{\alpha}{2} \right)}{\Gamma \left(N - 1 - \frac{\alpha}{2} + k \right) \Gamma \left(\frac{\alpha}{2} \right)} , \]

and

\[g_k = \frac{\langle g, P_k^{(N-2)/2} \rangle}{\| P_k^{(N-2)/2} \|^2} = 2^{N-3-\alpha} \frac{N + 2k - 2}{\sqrt{\pi}} \frac{\Gamma \left(\frac{N - 1 - \alpha}{2} \right) \Gamma \left(\frac{N}{2} - 1 \right) \Gamma \left(k + \frac{\alpha}{2} \right)}{\Gamma \left(N - 1 - \frac{\alpha}{2} + k \right) \Gamma \left(\frac{\alpha}{2} \right)} . \]

Therefore,

(2) \[g^k = g_k C_{k,N}^{-1} = 2^{N-1-\alpha} \pi^{(N-1)/2} \frac{\Gamma \left(\frac{N - 1 - \alpha}{2} \right) \Gamma \left(k + \frac{\alpha}{2} \right)}{\Gamma \left(N - 1 - \frac{\alpha}{2} + k \right) \Gamma \left(\frac{\alpha}{2} \right)} , \]

if \(N > 2 \). On the other hand, if \(N = 2 \), the \(k \)-th Chebyshev’s polynomial is \(T_k(t) = F(-k, k; 1/2; (1-t)/2) \), (see [AS, p.779]), and

\[\langle g, P_k^0 \rangle = \int_{-1}^{1} (2 - 2t)^{-\alpha/2} F(-k, k; 1/2; (1-t)/2)(1-t^2)^{-1/2} dt . \]

Using the above computations when \(N = 2 \), we have that

\[\langle g, P_k^0 \rangle = 2^{-\alpha} \pi^{1/2} \frac{\Gamma \left(\frac{1 - \alpha}{2} \right) \Gamma \left(k + \frac{\alpha}{2} \right)}{\Gamma \left(1 - \frac{\alpha}{2} + k \right) \Gamma \left(\frac{\alpha}{2} \right)} . \]

Moreover it is easy to see, [AS, p.774], that

\[\| P_k^0 \|^2 = \begin{cases} \frac{\pi}{2}, & \text{if } k > 0, \\ \frac{\pi}{2}, & \text{if } k = 0, \end{cases} \]

and also that \(C_{k,2}^{-1} = 2 \| P_k^0 \|^2 \).

Then

\[g^k = \frac{\langle g, P_k^0 \rangle}{\| P_k^0 \|^2} C_{k,2}^{-1} , \]

and so (2) is also satisfied in this case \((N = 2) \). Therefore we have proved the following:
Lemma 1. For all $N \in \mathbb{N}$, $N > 1$ and $0 < \alpha < N - 1$,
\[
\Phi_\alpha(|\xi - \eta|) = \sum_{k=0}^{\infty} g^k Z_\eta^k(\xi),
\]
where
\[
g^k = 2^{N-1-\alpha} \pi^{(N-1)/2} \frac{\Gamma \left(\frac{N-1-\alpha}{2} \right) \Gamma \left(k + \frac{\alpha}{2} \right)}{\Gamma \left(\frac{N-1-\alpha}{2} + k \right) \Gamma \left(\frac{\alpha}{2} \right)}.
\]

Now we can express the α-energy of a measure μ in terms of its Poisson extension P_μ.

Lemma 2. If μ is a signed measure supported on Σ_{N-1}, we have:

(i) If $0 < \alpha < N - 1$, then
\[
I_\alpha(\mu) = C(N, \alpha) \int_0^1 \left\{ \int_{\Sigma_{N-1}} |P_\mu(r\xi)|^2 d\xi \right\} r^{\alpha-1} (1 - r^2)^{N-2-\alpha} dr,
\]
with
\[
C(N, \alpha) = \frac{4\pi^{N/2}}{\Gamma \left(\frac{\alpha}{2} \right) \Gamma \left(\frac{N-\alpha}{2} \right)}.
\]

(ii) If $m = \mu(\Sigma_{N-1})$, then
\[
I_0(\mu) = \omega_{N-1} \int_0^1 \int_{\Sigma_{N-1}} \left| P_\mu(r\xi) - \frac{m}{\omega_{N-1}} \right|^2 r^{\alpha-1} (1 - r^2)^{N-2-\alpha} dr d\xi
\]
\[
+ \frac{m^2}{2} \left[\frac{\Gamma'}{\Gamma \left(\frac{N}{2} \right)} - \frac{\Gamma'}{\Gamma(N-1)} \right].
\]

In particular, if $N = 2$,
\[
I_0(\mu) = 2\pi \int_0^1 \int_0^{2\pi} \left| P_\mu(re^{i\theta}) - \frac{m}{2\pi} \right|^2 d\theta dr.
\]

Proof. Let $\{\mu_j^k\}$, $k \geq 0$, $1 \leq j \leq a_k$, be the Fourier coefficients of μ, i.e.,
\[
\mu \sim \sum_{k=0}^{\infty} \sum_{j=1}^{a_k} \mu_j^k \gamma_j^k.
\]
Recall that P_μ is defined by
\[
P_\mu(r\xi) = \int_{\Sigma_{N-1}} p(\eta, r\xi) d\mu(\eta),
\]
where \(p(\eta, r \xi) \) is the classical (normalized) Poisson kernel
\[
p(\eta, r \xi) = \frac{1}{\omega_{N-1}} \frac{1-r^2}{|\eta-r \xi|^N}.
\]

We have [SW, p.145]
\[
p(\eta, r \xi) = \sum_{k=0}^{\infty} r^k Z^k_{\eta}(\xi) = \sum_{k,j} r^k Y^k_j(\eta) Y^k_j(\xi).
\]

Now, Plancherel's theorem gives
\[
P_\mu(r \xi) = \sum_{k,j} r^k \mu^k_j Y^k_j(\xi).
\]

Using again Plancherel's theorem we obtain
\[
\int_{\Sigma_{N-1}} |P_\mu(r \xi)|^2 \, d\xi = \sum_{k,j} r^{2k} |\mu^k_j|^2,
\]
and so if we define \(\Lambda \) as the right hand side in (i), we have
\[
\Lambda = C(N, \alpha) \sum_{k,j} |\mu^k_j|^2 \int_0^1 r^{2k+\alpha-1} (1-r^2)^{N-2-\alpha} \, dr,
\]
and, substituting \(r^2 = t \), we get that
\[
\Lambda = \frac{C(N, \alpha)}{2} \sum_{k,j} \frac{\Gamma\left(k + \frac{\alpha}{2}\right) \Gamma(N-1-\alpha)}{\Gamma\left(k + N-1 - \frac{\alpha}{2}\right)} |\mu^k_j|^2 = \sum_{j,k} g^k |\mu^k_j|^2.
\]

Note that we have used the known duplication formula for the Gamma function in the last equality.

On the other hand, by (1),
\[
\Phi_\alpha(|\xi - \eta|) = \sum_{k=0}^{\infty} g^k Z^k_{\eta}(\xi) = \sum_{k,j} g^k Y^k_j(\eta) Y^k_j(\xi),
\]
and using Plancherel's theorem we obtain
\[
\int_{\Sigma_{N-1}} \Phi_\alpha(|\xi - \eta|) \, d\mu(\eta) = \sum_{k,j} g^k \mu^k_j Y^k_j(\xi),
\]
\[
I_\alpha(\mu) = \sum_{k,j} g^k |\mu^k_j|^2 = \Lambda.
\]
This finishes the proof of (i).

In order to prove (ii) observe that

$$\int_{\Sigma N-1} \left| P_\mu(r\xi) - \frac{m}{\omega_{N-1}} \right|^2 d\xi + \frac{m^2}{\omega_{N-1}} = \int_{\Sigma N-1} \left| P_\mu(r\xi) \right|^2 d\xi.$$

Integrating this equality we have

$$I_\alpha(\mu) = C(N, \alpha) \int_0^1 \int_{\Sigma N-1} \left| P_\mu(r\xi) - \frac{m}{\omega_{N-1}} \right|^2 d\xi r^{\alpha-1}(1-r^2)^{N-2-\alpha} dr$$

$$+ m^2 U(\alpha),$$

where

$$U(\alpha) = \frac{\Gamma(N/2)\Gamma(N-1-\alpha)}{\Gamma((N-\alpha)/2)\Gamma(N-1-\alpha/2)},$$

and hence

$$\lim_{\alpha \to 0} \frac{I_\alpha(\mu) - m^2 U(\alpha)}{\alpha} = \omega_{N-1} \int_0^1 \int_{\Sigma N-1} \left| P_\mu(r\xi) - \frac{m}{\omega_{N-1}} \right|^2 d\xi (1-r^2)^{N-2} dr / r.$$

On the other hand,

$$\lim_{\alpha \to 0} \frac{I_\alpha(\mu) - m^2 U(\alpha)}{\alpha} = \lim_{\alpha \to 0} \frac{I_\alpha(\mu) - m^2}{\alpha} - \frac{m^2}{\omega_{N-1}} \lim_{\alpha \to 0} \frac{U(\alpha) - 1}{\alpha} = I_0(\mu) - m^2 U'(0),$$

and

$$U'(0) = \frac{1}{2} \left[\frac{\Gamma'(N/2)}{\Gamma(N/2)} - \frac{\Gamma'(N-1)}{\Gamma(N-1)} \right].$$

This finishes the proof of Lemma 2. \qed

3. Distortion of α-capacity.

We need the following lemmas.

Lemma 3. Let μ be a finite positive measure in $\partial \Delta$, and let f be an inner function. Then, there exists a unique positive measure $\bar{\nu}$ in \mathbb{S}_n such that $P_\mu \circ f = P_{\bar{\nu}}$ and

$$\bar{\nu}(f^{-1}(\text{support } \mu)) = \tilde{\nu}(\mathbb{S}_n).$$

Therefore if, moreover, $f(0) = 0$, then

$$\frac{1}{\omega_{2n-1}} \tilde{\nu}(\mathbb{S}_n) = \frac{1}{2\pi} \mu(\partial \Delta).$$
Proof. It is essentially the same as Lemma 1 in [FP], but see Lemma 14 below for further details.

A different normalization is useful; choosing \(\nu = (2\pi / \omega_{2n-1}) \bar{\nu} \), one obtains

\[
P_\nu = \frac{2\pi}{\omega_{2n-1}} P_\mu \circ f \quad \text{and} \quad \nu(\mathbb{S}_n) = \mu(\partial \Delta).
\]

The following is well known

Lemma 4. (Subordination principle) Let \(f : \mathbb{B}_n \rightarrow \Delta \) be a holomorphic function such that \(f(0) = 0 \), and let \(\nu : \Delta \rightarrow \mathbb{R} \) be a subharmonic function. Then

\[
\frac{1}{\omega_{2n-1}} \int_{\mathbb{S}_n} \nu(f(r \xi)) \, d\xi \leq \frac{1}{2\pi} \int_0^{2\pi} \nu(re^{i\theta}) \, d\theta.
\]

It will be relevant later on to recall the well known fact that, in the case \(n = 1 \), equality in Lemma 4 holds if and only if either \(\nu \) is harmonic or \(f \) is a rotation. Note also that there is no such equality statement when \(n > 1 \), since in higher dimensions the extremal functions in Schwarz’s lemma are not so clearly determined (see e.g. [R, p.164]).

Lemma 5. Let \(\mu \) be a signed measure on \(\partial \Delta \), \(f \) an inner function with \(f(0) = 0 \), and \(\nu \) a signed measure on \(\mathbb{S}_n \) such that

\[
P_\nu = (2\pi / \omega_{2n-1}) P_\mu \circ f.
\]

Then

(i) If \(n = 1 \) and \(0 \leq \alpha < 1 \), then

\[
I_\alpha(\nu) \leq I_\alpha(\mu).
\]

(ii) If \(n > 1 \) and \(0 < \alpha < 1 \), then

\[
I_{2n-2+\alpha}(\nu) \leq K(n, \alpha) I_\alpha(\mu),
\]

where

\[
K(n, \alpha) = \frac{(n-1)! \Gamma \left(\frac{\alpha}{2} \right)}{\Gamma \left(n - 1 + \frac{\alpha}{2} \right)}.
\]

If \(\alpha = 0 \) and \(m = \mu(\partial \Delta) = \nu(\mathbb{S}_n) \), we have

\[
I_{2n-2}(\nu) \leq (2n - 2) I_0(\mu) + m^2.
\]
The measure \(\nu \) is obtained from Lemma 3 by splitting \(\mu \) into its positive and negative parts. Note that for fixed \(\alpha \),

\[
K(n, \alpha) \sim n^{1-\alpha/2} \Gamma \left(\frac{\alpha}{2} \right), \quad \text{as } n \to \infty,
\]
while for fixed \(n > 1 \)

\[
K(n, \alpha) \sim \frac{C_n}{\alpha}, \quad \text{as } \alpha \to 0.
\]

Let us observe also that \(K(n, \alpha) \) takes the value 1 for \(n = 1 \).

Proof. Since \(|P_\mu - \frac{m}{2\pi}|^2 \) and \(|P_\mu|^2 \) are subharmonic, we obtain by subordination, Lemma 4, that if \(n = 1 \) and \(\alpha = 0 \)

\[
\int_0^{2\pi} \left| P_\nu - \frac{m}{2\pi} \right|^2 d\theta = \int_0^{2\pi} \left| P_\mu(f) - \frac{m}{2\pi} \right|^2 d\theta \leq \int_0^{2\pi} \left| P_\mu - \frac{m}{2\pi} \right|^2 d\theta,
\]

and if \(n \geq 1, 0 < \alpha < 1 \), that

\[
(3) \quad \int_{\mathbb{S}_n} |P_\nu|^2 d\xi = \left(\frac{2\pi}{\omega_{2n-1}} \right)^2 \int_{\mathbb{S}_n} |P_\mu(f)|^2 d\xi \leq \frac{2\pi}{\omega_{2n-1}} \int_0^{2\pi} |P_\mu|^2 d\theta.
\]

In the first case, we obtain

\[
I_0(\nu) \leq I_0(\mu)
\]

by integrating with respect to \(2\pi dr/r \) and applying Lemma 2, part (ii).

In the second case, using Lemma 2, part (i), and Lemma 4 with \(v = |P_\mu|^2 \), we have that

\[
I_{2n-2+\alpha}(\nu) = C(2n, 2n - 2 + \alpha) \int_0^1 \left\{ \int_{\mathbb{S}_n} |P_\nu(r\xi)|^2 d\xi \right\} r^{2n-2+\alpha-1} \frac{dr}{(1-r^2)^\alpha} \leq \frac{C(2n, 2n - 2 + \alpha)}{C(2, \alpha)} \cdot \frac{2\pi}{\omega_{2n-1}} \int_0^1 \left\{ \int_0^{2\pi} |P_\mu(r e^{i\theta})|^2 d\theta \right\} r^{\alpha-1} \frac{dr}{(1-r^2)^\alpha} = K(n, \alpha) I_{\alpha}(\mu),
\]

where

\[
K(n, \alpha) = \frac{(n-1)! \Gamma \left(\frac{\alpha}{2} \right)}{\Gamma(n-1 + \frac{\alpha}{2})}.
\]

Finally, since \(\nu(\mathbb{S}_n) = m \),

\[
\int_{\mathbb{S}_n} \left| P_\nu(r\xi) - \frac{m}{\omega_{2n-1}} \right|^2 d\xi = \int_{\mathbb{S}_n} |P_\nu(r\xi)|^2 d\xi - \frac{m^2}{\omega_{2n-1}},
\]
and so, Lemma 2 gives, if \(n > 1 \),
\[
I_{2n-2}(\nu) = m^2 + \frac{4\pi^n}{(n-2)!} \int_0^1 \int_{S_n} \left| P_\nu(r\xi) - \frac{m}{\omega_{2n-1}} \right|^2 \, d\xi \, r^{2n-3} \, dr .
\]
By lemmas 3 and 4, we get
\[
\int_{S_n} \left| P_\nu(r\xi) - \frac{m}{\omega_{2n-1}} \right|^2 \, d\xi = \int_{S_n} \left| \frac{2\pi}{\omega_{2n-1}} P_\mu(f(r\xi)) - \frac{m}{\omega_{2n-1}} \right|^2 \, d\xi
= \left(\frac{2\pi}{\omega_{2n-1}} \right)^2 \int_{S_n} \left| P_\mu(f(r\xi)) - \frac{m}{2\pi} \right|^2 \, d\xi
\leq \frac{2\pi}{\omega_{2n-1}} \int_0^{2\pi} \left| P_\mu(re^{i\theta}) - \frac{m}{2\pi} \right|^2 \, d\theta .
\]
Therefore,
\[
I_{2n-2}(\nu) \leq m^2 + \frac{4\pi^n}{(n-2)!} \int_0^1 \frac{2\pi}{\omega_{2n-1}} \int_0^{2\pi} \left| P_\mu(re^{i\theta}) - \frac{m}{2\pi} \right|^2 \, d\theta \, \frac{dr}{r}
= m^2 + \frac{4\pi^n}{(n-2)!} \frac{1}{\omega_{2n-1}} I_0(\mu)
= m^2 + (2n-2)I_0(\mu).}

The proof of Lemma 5 is finished. \(\square \)

Finally, we can prove

Theorem 1. If \(f \) is inner in the unit disk \(\Delta \), \(f(0) = 0 \), and \(E \) is a Borel subset of \(\partial \Delta \), we have:
\[
\text{cap}_\alpha(f^{-1}(E)) \geq \text{cap}_\alpha(E), \quad 0 \leq \alpha < 1 .
\]
Moreover, if \(E \) is any Borel subset of \(\partial \Delta \) with \(\text{cap}_\alpha(E) > 0 \), equality holds if and only if either \(f \) is a rotation or \(\text{cap}_\alpha(E) = \text{cap}_\alpha(\partial \Delta) \).

Notice the following consequence concerning invariant sets. It is well known that an inner function \(f \) with \(f(0) = 0 \), which is not a rotation, is ergodic with respect to Lebesgue measure, see e.g. [P]. As a consequence of the above, it is also ergodic with respect to \(\alpha \)-capacity. More precisely,

Corollary. With the hypotheses of Theorem 1, if \(f \) is not a rotation and if the symmetric difference between \(E \) and \(f^{-1}(E) \) has zero \(\alpha \)-capacity, then either \(\text{cap}_\alpha(E) = 0 \) or \(\text{cap}_\alpha(E) = \text{cap}_\alpha(\partial \Delta) \).

In higher dimensions we have
Theorem 2. If \(f \) is inner in the unit ball of \(\mathbb{C}^n \), \(f(0) = 0 \), and \(E \) is a Borel subset of \(\partial \Delta \), we have:

\[
\text{cap}_{2n-2+\alpha}(f^{-1}(E)) \geq K(n, \alpha)^{-1} \text{cap}_{\alpha}(E), \quad 0 < \alpha < 1,
\]

and

\[
\frac{1}{\text{cap}_{2n-2}(f^{-1}(E))} \leq 1 + (2n - 2) \log \frac{1}{\text{cap}_0(E)}, \quad (n > 1).
\]

Proof of Theorems 1 and 2. To prove the inequalities in the theorems we may assume that \(E \) is closed. Assume first that \(n = 1, 0 < \alpha < 1 \). Let us denote by \(\mu_e \) the \(\alpha \)-equilibrium probability distribution of \(E \), and let \(\nu \) be the probability measure such that \(P_\nu = P_{\mu_e} \circ f \). By Lemma 5,

\begin{equation}
I_\alpha(\nu) \leq I_\alpha(\mu_e) = (\text{cap}_\alpha(E))^{-1}.
\end{equation}

But, from Lemma 3, \(I_\alpha(f^{-1}(E)) = 1 \), and so

\[
I_\alpha(\nu) = \int_{f^{-1}(E)} \Phi_{\alpha}(|z - \nu|) \, d\nu(z) \, d\nu(w).
\]

Now, let \(\{K_n\} \) be an increasing sequence of compacts subsets in \(\partial \Delta \), \(K_n \subset f^{-1}(E) \), such that \(\nu(K_n) \to 1 \). The monotone convergence theorem gives

\begin{equation}
I_\alpha(\nu) \geq \lim_{n \to \infty} (\text{cap}_\alpha(K_n))^{-1} = \inf_n (\text{cap}_\alpha(K_n))^{-1}
\end{equation}

\[
\geq (\text{cap}_\alpha(f^{-1}(E)))^{-1}.
\]

The inequality in Theorem 1 follows now from (4) and (5).

The cases \(n > 1 \) (Theorem 2) and \(n = 1, \alpha = 0 \) are completely analogous.

Proof of Equality Statement in Theorem 1. We prove it first in the case that \(E \) is closed. We include it since its proof shows more clearly the ideas that we will use to demonstrate the general case.

Suppose that \(0 < \alpha < 1 \). We have seen that

\[
\frac{1}{\text{cap}_\alpha(f^{-1}(E))} \leq I_\alpha(\nu) \leq I_\alpha(\mu_e) = \frac{1}{\text{cap}_\alpha(E)}.
\]

Therefore, if \(E \) and \(f^{-1}(E) \) have the same \(\alpha \)-capacity, then

\[
I_\alpha(\nu) = I_\alpha(\mu_e),
\]

and this is possible only if for all \(r \in (0, 1) \),

\[
\int_0^{2\pi} |P_{\mu_e}(re^{i\theta})|^2 \, d\theta = \int_0^{2\pi} |P_{\mu_e}(f(re^{i\theta}))|^2 \, d\theta.
\]
This can occur only if either \(f \) is a rotation or \(|P_{\mu_e}|^2\) is harmonic. In the latter case, we obtain that \(\mu_e \) is normalized Lebesgue measure, or equivalently that \(\text{cap}_\alpha(E) = \text{cap}_\alpha(\partial \Delta) \). Since \(E \) is closed, it follows that \(E = \partial \Delta \).

In order to prove the general case we need a characterization of the \(\alpha \)-capacity of \(E \) when \(E \) is not closed (see Lemmas 10 and 10' below). We begin by recalling some facts about convergence of measures.

We will say that a sequence of signed measures \(\{\sigma_n\} \) with supports contained in a compact set \(K \) converges \(w^* \) to a signed measure \(\sigma \) if

\[
\int h(x) \, d\sigma_n(x) \xrightarrow{n \to \infty} \int h(x) \, d\sigma(x), \quad \text{for all } h \in C(K).
\]

Here, the \(w^* \)-convergence makes reference to the duality between the space of signed measures on \(K \) and the space \(C(K) \) of continuous functions with support contained in \(K \).

In this Section, we will denote by \(\mathcal{M}_\alpha(K) \) \((0 \leq \alpha < 1)\) the vector space of all signed measures with support contained in \(K \) and whose \(\alpha \)-energy is finite. \(\mathcal{M}_\alpha \) will be the same space without restriction on the support of the measure, and \(\mathcal{M}_\alpha^+ \) the corresponding space of positive measures.

Remark 1. If \(\{\sigma_n\} \subset \mathcal{M}_\alpha^+ \), \(0 \leq \alpha < 1 \) and \(\sigma_n \xrightarrow{w^*} \sigma \), then \(\sigma \in \mathcal{M}_\alpha^+ \) and

\[
I_\alpha(\sigma) \leq \liminf_{n \to \infty} I_\alpha(\sigma_n).
\]

Proof of Remark 1. Let \(\Phi_{\alpha, \rho}(t) \) be the “truncated” kernel

\[
\Phi_{\alpha, \rho}(t) = \begin{cases}
\Phi_{\alpha}(t), & \text{if } \Phi_{\alpha}(t) \leq \rho, \\
\rho, & \text{if } \Phi_{\alpha}(t) \geq \rho.
\end{cases}
\]

Then, for all \(\rho > 0 \),

\[
\int \int \Phi_{\alpha, \rho}(|x - y|) \, d\sigma(x) \, d\sigma(y) = \lim_{n \to \infty} \int \int \Phi_{\alpha, \rho}(|x - y|) \, d\sigma_n(x) \, d\sigma_n(y) \leq \liminf_{n \to \infty} I_\alpha(\sigma_n).
\]

The remark follows now from the monotone convergence theorem (as \(\rho \to \infty \)).
Lemma 6. ([L, p.79]) If $0 < \alpha < 1$ and $\sigma \in \mathcal{M}_\alpha$, then $I_\alpha(\sigma) \geq 0$. Moreover
\[I_\alpha(\sigma) = 0 \quad \text{if and only if} \quad \sigma \equiv 0. \]

Lemma 6'. ([L, p.80]) If $\sigma \in \mathcal{M}_0$ and the support of σ is contained in an open disk of radius 1, then $I_0(\sigma) \geq 0$ and
\[I_0(\sigma) = 0 \quad \text{if and only if} \quad \sigma \equiv 0. \]

These two lemmas allow us to define an inner product in \mathcal{M}_α (for $0 < \alpha < 1$) and e.g. in $\mathcal{M}_0(\{|z| = 1/2\})$ (for $\alpha = 0$) as follows
\[\langle \sigma, \gamma \rangle = \int \int \Phi_\alpha(|x-y|) \, d\sigma(x) d\gamma(y). \]

Observe that the associated norm verifies
\[\|\sigma\|^2 = I_\alpha(\sigma). \]

Lemma 7. If $0 < \alpha < 1$, $\{\sigma_n\} \subset \mathcal{M}_\alpha^+(\partial\Delta)$, $\sigma_n \overset{w^*}{\rightarrow} \sigma$, and $\|\sigma_n\| < M$, then $\sigma \in \mathcal{M}_\alpha^+(\partial\Delta)$ and $\sigma_n \overset{w}{\rightarrow} \sigma$ in weak sense with respect to the inner product.

The result remains true if we replace $\mathcal{M}_\alpha^+(\partial\Delta)$ by $\mathcal{M}_0^+(\{|z| = 1/2\})$.

Proof. From Remark 1, we get that $\sigma \in \mathcal{M}_\alpha^+(\partial\Delta)$ in the case $0 < \alpha < 1$ and $\sigma \in \mathcal{M}_0^+(\{|z| = 1/2\})$ in the case $\alpha = 0$. Moreover,
\[\|\sigma\| \leq \liminf_{n \to \infty} \|\sigma_n\|. \]

Now, if γ is a signed measure whose potential
\[U_\alpha^\gamma(x) = \int \Phi_\alpha(|x-y|) \, d\gamma(y) \]
is a continuous function, then
\[\langle \sigma_n, \gamma \rangle = \int U_\alpha^\gamma(x) \, d\sigma_n(x) \overset{n \to \infty}{\longrightarrow} \int U_\alpha^\gamma(x) \, d\sigma(x) = \langle \sigma, \gamma \rangle. \]

This demonstrates the lemma, since such measures are dense in $\mathcal{M}_\alpha(\partial\Delta)$ ($0 < \alpha < 1$) ([L, p.82]) and in $\mathcal{M}_0(\{|z| = 1/2\})$ ([L, p.83]). \qed
Lemma 8. If \(0 < \alpha < 1\), \(\{\sigma_n\}\) is a Cauchy sequence (with respect to the inner product) in \(\mathcal{M}_n^+(\partial \Delta)\) and \(\sigma_n \rightharpoonup \sigma\), then \(\sigma_n \rightarrow \sigma\) in the norm, i.e.,
\[
\|\sigma_n - \sigma\| \rightarrow 0, \text{ as } n \rightarrow \infty.
\]

The statement remains true if we replace \(\mathcal{M}_n^+(\partial \Delta)\) by \(\mathcal{M}_n^+(\{|z| = 1/2\})\).

Proof. Since \(\{\sigma_n\}\) is a Cauchy sequence, \(\{\|\sigma_n\|\}\) is a bounded set and hence, and so, from Lemma 7, \(\sigma \in \mathcal{M}_n^+(\partial \Delta)\) and
\[
\|\sigma - \sigma_n\|^2 = \langle \sigma - \sigma_n, \sigma - \sigma_n \rangle = \lim_{p \rightarrow \infty} \langle \sigma - \sigma_n, \sigma_p - \sigma_n \rangle.
\]

Therefore, by Cauchy-Schwarz inequality,
\[
\|\sigma - \sigma_n\|^2 \leq \lim_{p \rightarrow \infty} \|\sigma - \sigma_n\| \|\sigma_p - \sigma_n\|,
\]
i.e.,
\[
\|\sigma - \sigma_n\| \leq \lim_{p \rightarrow \infty} \|\sigma_p - \sigma_n\|.
\]

Lemma 9. If \(0 < \alpha < 1\), \(K\) is a compact subset of \(\partial \Delta\) and \(\mu_K\) is the equilibrium measure of \(K\), then for any probability \(\sigma\) supported on \(K\),
\[
\|\sigma - \mu_K\|^2 \leq \|\sigma\|^2 - \|\mu_K\|^2.
\]

The lemma remains true for the case \(\alpha = 0\) if \(K\) is a compact subset of \(\{|z| = 1/2\}\).

Proof. Consider for \(t \in [0, 1]\) the probabilities supported on \(K\) given by
\[
\sigma_t = (1 - t)\mu_K + t\sigma.
\]

As \(\sigma_t = \mu_K + t(\sigma - \mu_K)\), we have that
\[
\|\mu_K\|^2 \leq \|\sigma_t\|^2 = \|\mu_K\|^2 + 2t \langle \mu_K, \sigma - \mu_K \rangle + t^2 \|\sigma - \mu_K\|^2.
\]

Hence, \(2 \langle \mu_K, \sigma - \mu_K \rangle + t\|\sigma - \mu_K\|^2 \geq 0\) if \(t \in (0, 1]\). By making \(t \rightarrow 0\) we obtain that \(\langle \mu_K, \sigma - \mu_K \rangle \geq 0\), i.e.,
\[
\langle \mu_K, \sigma \rangle \geq \|\mu_K\|^2.
\]

Hence,
\[
\|\sigma - \mu_K\|^2 = \|\sigma\|^2 - 2\langle \sigma, \mu_K \rangle + \|\mu_K\|^2
\]
\[
\leq \|\sigma\|^2 - 2\|\mu_K\|^2 + \|\mu_K\|^2 = \|\sigma\|^2 - \|\mu_K\|^2.
\]

\(\square\)
Now we can prove the characterization of $\text{cap}_\alpha(E)$ in terms of the α-energy.

Lemma 10. If $0 < \alpha < 1$ and E is any bounded Borel set in \mathbb{C},

$$(6) \quad \frac{1}{\text{cap}_\alpha(E)} = \inf \left\{ I_\alpha(\mu) : \mu \text{ probability, } \mu(E) = 1 \right\},$$

and there exists a probability μ_e supported on \overline{E} such that

$$(7) \quad \frac{1}{\text{cap}_\alpha(E)} = I_\alpha(\mu_e).$$

Proof. If $\text{cap}_\alpha(E) = 0$ it is easy to check that both sides of (6) are simultaneously infinite. Assume $\text{cap}_\alpha(E) > 0$ and let μ be a probability with $\mu(E) = 1$ and finite α-energy. Let $K_n \subset E$ be a sequence of compact sets such that $\mu(K_n) \to 1$. Then

$$\frac{1}{\text{cap}_\alpha(E)} \leq \frac{1}{\text{cap}_\alpha(K_n)} \leq I_\alpha(\mu|_{K_n}) = \frac{1}{(\mu(K_n))^2} \int \int_{K_n \times K_n} \Phi_\alpha(|x-y|) \, d\mu(x) \, d\mu(y).$$

Letting $n \to \infty$, the monotone convergence theorem gives us

$$\frac{1}{\text{cap}_\alpha(E)} \leq I_\alpha(\mu)$$

and so

$$\frac{1}{\text{cap}_\alpha(E)} \leq \inf \left\{ I_\alpha(\mu) : \mu \text{ probability, } \mu(E) = 1 \right\}.$$

In order to prove the opposite inequality we choose an increasing sequence $K_n \subset E$ of compact sets such that $\text{cap}_\alpha(K_n) \to \text{cap}_\alpha(E)$. Then, if μ_n denotes the equilibrium distribution of K_n, $I_\alpha(\mu_n) = \frac{1}{\text{cap}_\alpha(K_n)} \leq \frac{1}{\text{cap}_\alpha(E)}$. This finishes the proof of (6). Moreover, up on extracting a subsequence, we can assume that $\mu_n \overset{w^*}{\to} \mu_e$, where μ_e is a probability measure supported on \overline{E}. By Remark 1 we see that this measure satisfies

$$(8) \quad I_\alpha(\mu_e) \leq \lim_{n \to \infty} I_\alpha(\mu_n) = \frac{1}{\text{cap}_\alpha(E)}.$$

To finish we only need to check that μ_e is the measure appearing in (7), by proving that, in fact, we have equality in (8). Since

$$\left| I_\alpha(\mu_e) - I_\alpha(\mu_n) \right| = \left| \|\mu_e\|^2 - \|\mu_n\|^2 \right|$$
and

$$\|\mu_c\| = \|\mu_n\| = \|\mu_c - \mu_n\|,$$

in view of Lemma 8, we only need to show that \(\{\mu_n\}\) is a Cauchy sequence in \(\mathcal{M}^+_0(E)\). But if \(n, p \in \mathbb{N}\) and \(n \geq p\), as \(K_p \subset K_n\), we have that \(\mu_p\) is a probability supported on \(K_n\), and so by Lemma 9 and (8),

$$\|\mu_p - \mu_n\|^2 \leq \|\mu_p\|^2 - \|\mu_n\|^2 = I_{\alpha}(\mu_p) - I_{\alpha}(\mu_n) \xrightarrow{p, n \to \infty} 0. \quad \square$$

For the case \(\alpha = 0\) we have

Lemma 10’. If \(E\) is a Borel subset of \(\partial\Delta\). Then

$$\log \frac{1}{\text{cap}_0(E)} = \inf \{I_0(\mu) : \mu \text{ probability, } \mu(E) = 1\}.$$ \quad (9)

Moreover, there exists a probability measure \(\mu_c\) supported on \(\overline{E}\) such that

$$\log \frac{1}{\text{cap}_0(E)} = I_0(\mu_c).$$ \quad (10)

Proof. The proof follows the same lines as in Lemma 10, up to the final steps. In order to prove (10) we need some modifications.

For \(\lambda > 0\), and \(A \subset \mathbb{C}\), we will denote by \(\lambda A\) the set \(\lambda A = \{\lambda z : z \in A\}\).

If \(E\) is a Borel subset of \(\partial\Delta\), then \(\frac{1}{2}E\) is a Borel subset of \(\{|z| = 1/2\}\). Now, take an increasing sequence of compact subsets \(K_n^* \subset \frac{1}{2}E\) such that \(\text{cap}_\alpha(K_n^*) \to \text{cap}_\alpha(\frac{1}{2}E)\). Let \(\mu_c^*\) be the equilibrium measure of \(K_n^*\). The probabilities \(\mu_n\) defined by

$$\mu_n(A) = \mu_c^*\left(\frac{1}{2}A\right), \quad \text{for } A \text{ Borel subset of } \partial\Delta,$$

are supported on \(E\). Moreover it is clear that

$$I_0(\mu_c^*) = I_0(\mu_n) + \log 2. \quad (12)$$

On the other hand as in the proof of Lemma 10, \(\mu_c^* \rightharpoonup \mu_c^*\), where \(\mu_c^*\) is a probability measure supported on \(\frac{1}{2}E\), and

$$\lim_{n \to \infty} I_0(\mu_n^*) = I_0(\mu_c^*). \quad (13)$$

As \(\mu_n \rightharpoonup \mu_c\), where \(\mu_c\) is the probability supported on \(\overline{E}\) related with \(\mu_c^*\) by (11), we conclude from (12) and (13) that

$$\lim_{n \to \infty} I_0(\mu_n) = I_0(\mu_c).$$
This finishes the proof of Lemma 10'.

Now we are ready to finish the proof of Theorem 1. Let E be a Borel subset of $\partial \Delta$ such that

\[
\text{cap}_\alpha(f^{-1}(E)) = \text{cap}_\alpha(E) > 0.
\]

We choose an increasing sequence of compact sets $K_n \subset E$ such that $\text{cap}_\alpha(K_n) \nearrow \text{cap}_\alpha(E)$. Let μ_n be the α-equilibrium measure of K_n and let μ_e be the probability measure supported on \overline{E} given by Lemmas 10 and 10'. We have (from the proof of these lemmas) that

\[
\mu_n \overset{w^*}{\to} \mu_e \quad \text{and} \quad I_\alpha(\mu_n) \searrow I_\alpha(\mu_e).
\]

as $n \to \infty$. In fact,

\[
\|\mu_n - \mu_e\| \to 0, \quad \text{as} \quad n \to \infty.
\]

Let ν_n be the probability measure, with $\nu_n(f^{-1}(K_n)) = 1$, such that $P_{\nu_n} = P_{\mu_n} \circ f$ (see Lemma 3). We can suppose up to extracting a subsequence, that $\nu_n \overset{w^*}{\to} \nu$ where ν is a probability on $\overline{f^{-1}(E)}$. As the Poisson kernel is continuous in Δ we obtain, by using the w^*-convergence, that

\[
P_{\mu_n} \to P_{\mu_e} \quad \text{and} \quad P_{\nu_n} \to P_{\nu}, \quad \text{as} \quad n \to \infty,
\]

pointwisely. Therefore $P_{\nu} = P_{\mu_e} \circ f$ (and so ν is a probability on $f^{-1}(\overline{E})$).

Claim: $I_\alpha(\nu_n) \to I_\alpha(\nu)$ as $n \to \infty$.

As ν_n is a probability measure on $f^{-1}(E)$, Lemmas 10 and 10' guarantee that

\[
\frac{1}{\text{cap}_\alpha(f^{-1}(E))} \leq I_\alpha(\nu_n),
\]

and so, by taking $n \to \infty$, and since moreover $P_{\nu} = P_{\mu_e} \circ f$ (by Lemma 5)

\[
\frac{1}{\text{cap}_\alpha(f^{-1}(E))} \leq I_\alpha(\nu) \leq I_\alpha(\mu_e) = \frac{1}{\text{cap}_\alpha(E)}.
\]

From (14), we deduce that $I_\alpha(\nu) = I_\alpha(\mu_e)$. Finally, we can reason as in the case when E is closed and we conclude that either f is a rotation or μ_e is normalized Lebesgue measure, i.e., $\text{cap}_\alpha(E) = \text{cap}_\alpha(\partial \Delta)$.

Proof of the Claim: Consider first the case $0 < \alpha < 1$. Since $P_{\nu_n} - \nu_n = P_{\mu_e} - \mu_n \circ f$, by Lemma 5 we obtain that

\[
\|\nu_p - \nu_n\|^2 = I_\alpha(\nu_p - \nu_n) \leq I_\alpha(\mu_p - \mu_n) = \|\mu_p - \mu_n\|^2 \xrightarrow{p,n \to \infty} 0.
\]
Therefore \(\{\nu_n\} \) is a Cauchy sequence in the norm and so, by Lemma 8, we have that
\[
\|\nu_n - \nu\| \to 0 \quad \text{and} \quad I_\alpha(\nu_n) \to I_\alpha(\nu)
\]
as \(n \to \infty \).

In the case \(\alpha = 0 \), let \(\mu_n^* \) and \(\nu_n^* \) be the measures defined from \(\mu_n \) and \(\nu_n \) as in the proof of Lemma 10'. Then using again Lemma 5 and (12) we have that
\[
\|\nu_n^* - \nu_n^*\|^2 = I_0(\nu_n^* - \nu_n^*) = I_0(\nu_p - \nu_n) + \log 2 \\
\leq I_0(\mu_p - \mu) + \log 2 = \|\mu_n^* - \mu_n^*\|^2 \xrightarrow{p,n \to \infty} 0.
\]

Therefore \(\{\nu_n^*\} \) is a Cauchy sequence in the norm and again by Lemma 8, we obtain that
\[
\|\nu_n^* - \nu^*\| \to 0 \quad \text{and} \quad I_0(\nu_n^*) \to I_0(\nu^*)
\]
as \(n \to \infty \). It follows, from (12) that
\[
I_0(\nu_n) \to I_0(\nu), \quad \text{as} \quad n \to \infty. \quad \square
\]

4. Some further results on distortion of capacity in the case \(n = 1 \).

First we show that Theorem 1 is sharp. In what follows \(|\cdot|\) will denote not normalized Lebesgue measure in \(\partial \Delta \) (\(|\partial \Delta| = 2\pi \)).

Proposition 1. \(\text{cap}_\alpha(f^{-1}(E)) \) can take any value between \(\text{cap}_\alpha(E) \) and \(\text{cap}_\alpha(\partial \Delta) \). More precisely, given \(0 < s \leq t < \text{cap}_\alpha(\partial \Delta) \) there exist a Borel subset \(E \) of \(\partial \Delta \) and an inner function \(f \) with \(f(0) = 0 \) such that \(\text{cap}_\alpha(E) = s \) and \(\text{cap}_\alpha(f^{-1}(E)) = t \).

This is a corollary of the following lemma

Lemma 11. Let \(I \) be any closed interval in \(\partial \Delta \) with \(|I| > 0 \), and let \(B \) be a finite union of closed intervals in \(\partial \Delta \) such that \(|B| = |I| \). Then there exists an inner function \(f \) such that
\[
f(0) = 0, \quad \text{and} \quad f^{-1}(I) = B.
\]

In fact, if \(0 < |I| < 2\pi \), then \(f \) is unique.

As a matter of fact, if \(B \) is any Borel set the proof of Lemma 11 gives also \(f \) as above with \(f^{-1}(I) = B \), where \(= \) denotes equality up to a set of zero Lebesgue measure.

It is natural to wonder if this lemma holds in higher dimensions, more precisely:
Is it true that given an interval I in $\partial \Delta$ and a Borel subset B of \mathbb{S}_n such that

$$\frac{|B|}{\omega_{2n-1}} = \frac{|I|}{2\pi},$$

there is an inner function $f: \mathbb{B}_n \to \Delta$ such that $f^{-1}(I) = B$?

It is no possible to construct such f by using the Ryll-Wojtaszczyk polynomials (see [R2]), since in that case the following stronger result would be true too: Given E, I subsets of $\partial \Delta$ with $|E| = |I|$ and $N \in \mathbb{N}$, there exists an inner function $f: \Delta \to \Delta$ such that

$$E = f^{-1}(I), \quad \text{and} \quad f^{(j)}(0) = 0, \quad \text{if } j \leq N.$$

But it is easy to see, as a consequence of Lemma 12, that this is no possible in general.

The following is well known.

Corollary. Let $0 \leq \alpha < 1$. If I is any interval in $\partial \Delta$, then I has the minimum α-capacity between all the Borel subsets of $\partial \Delta$ with the same Lebesgue measure than I.

Proof of Lemma 11. Let u be the Poisson integral of the characteristic function of B, and let \tilde{u} be its conjugate harmonic function chosen such that $\tilde{u}(0) = 0$. Since $u(0) = |B|/2\pi$ the holomorphic function $F = u + i\tilde{u}$ transforms Δ into the strip $S = \{\omega : 0 < \text{Re} \omega < 1\}$. Notice that F has radial boundary values except for a finite number of points, and F applies the interior of B into $\{\omega : \text{Re} \omega = 1\}$ and $\partial \Delta \setminus B$ into $\{\omega : \text{Re} \omega = 0\}$.

Now, let G be the Riemann mapping of S chosen such that

$$G(|B|/2\pi) = 0.$$

G transforms $\{\omega : \text{Re} \omega = 1\}$ onto an interval J of $\partial \Delta$. On the other hand, the function $h = G \circ F$ is clearly an inner function, $h(0) = 0$ and $h^{-1}(I) = B$. By composing h with an appropriate rotation we finish the proof of the existence statement.

To show the uniqueness of f, it is sufficient to prove the following

Lemma 12. If A is any Borel subset of $\partial \Delta$, such that $\int_A e^{-i\theta} d\theta \neq 0$, and f, g are inner functions with $f(0) = g(0) = 0$ such that

$$f^{-1}(A) \circ g^{-1}(A),$$

then $f \equiv g$.
Here \circ denotes equality up to a set of zero Lebesgue measure.

Proof. Let $F: \Delta \rightarrow \{ \omega : 0 < \Re \omega < 1 \}$ be the holomorphic function given by

$$F(z) = \frac{1}{2\pi} \int_A \frac{e^{i\theta} + z}{e^{i\theta} - z} \, d\theta.$$

F is univalent in a neighbourhood of 0, because

$$F'(0) = \frac{1}{\pi} \int_A e^{-i\theta} \, d\theta \neq 0.$$

Now, observe that $\Re (F \circ f) = \Re (F \circ g)$ almost everywhere on $\partial \Delta$. Since $\Re (F \circ f)$ and $\Re (F \circ g)$ are bounded harmonic functions it follows that $F \circ f = F \circ g + ic$ in Δ, where c is a real constant. Since $f(0) = g(0)$, we deduce that $F \circ f = F \circ g$ which proves the lemma because F is univalent in a neighbourhood of 0. □

Observe that, in particular, the condition $\int_A e^{-i\theta} \, d\theta \neq 0$ is satisfied e.g. if A is any interval in $\partial \Delta$ with $0 < \vert A \vert < 2\pi$.

The condition $\int_A e^{-i\theta} \, d\theta \neq 0$ is not only a technicality. If A is k-symmetrical (i.e., there exists a subset $A_0 \subset A$, with $A_0 \subset [0, 2\pi/k]$, such that $A = A_0 \cup (A_0 + 2\pi/k) \cup (A_0 + 4\pi/k) \cup \cdots \cup (A_0 + 2\pi(k-1)/k)$, and $\int_A e^{-ik\theta} \, d\theta \neq 0$, then $f = \omega g$, where ω is a k-th root of unity. To see this, one can use Lemma 12 with the functions $h \circ f$, $h \circ g$ and the set $h(A)$, where $h(z) = z^k$.

Also, note that if A is the union of two intervals in $\partial \Delta$, then $f = \pm g$, because $\int_A e^{-i\theta} \, d\theta = 0$ implies that A is 2-symmetrical.

Notice that if the function g in Lemma 12 were the identity, and $0 < \vert A \vert < 2\pi$, then, by ergodicity, we have that f is a rotation of rational angle. This, together the above remark, could suggest that perhaps the following statement is true:

*If A is any Borel subset of $\partial \Delta$, such that $0 < \vert A \vert < 2\pi$, and f, g are inner functions with $f(0) = g(0) = 0$ such that

$$f^{-1}(A) = g^{-1}(A),$$

then $f \equiv \lambda g$ with $\vert \lambda \vert = 1$.***

But this is false as the next example shows: Let B be the following Blaschke product

$$B(z) = \frac{2z - 1}{2 - z}.$$

By applying a theorem of Stephenson [S, Theorem 3] to the pair $B, -B$, one obtains two inner functions f and g with $f(0) = g(0) = 0$, such that

$$B \circ f = -B \circ g.$$
But then \((B(f))^2 = (B(g))^2\), and so, if we had \(f = \lambda g\), we could conclude that
\(B(z) = -B(\lambda z)\). But, since \(B'(0) \neq 0\), we had \(\lambda = -1\), i.e., \(B(z) = -B(-z)\), a contradiction.

The following is not unexpected since ergodic theory says that \(f^{-k}(E)\) is well
spread on \(\partial \Delta\). Hereafter \(f^k = f \circ \cdots \circ f\) denotes the \(k\)-iterate of \(f\) and \(f^{-k} = (f^k)^{-1}\).

Proposition 2. If \(f : \Delta \longrightarrow \Delta\) is inner but not a rotation, \(f(0) = 0\), \(0 \leq \alpha < 1\) and \(E\) is a Borel subset of \(\partial \Delta\) with \(\text{cap}_\alpha(E) > 0\), then
\[
\text{cap}_\alpha(f^{-k}(E)) \rightarrow \text{cap}_\alpha(\partial \Delta) \quad \text{as} \quad k \to \infty.
\]

The proof of this result is an easy consequence of the following lemma.

Lemma 13. With the hypotheses of Proposition 2, if \(\mu\) is any probability on \(E\) with finite \(\alpha\)-energy and if \(\nu_k\) is the probability measure in \(f^{-k}(E)\) such that \(P_{\nu_k} = P_{\mu} \circ f^k\), then
\[
I_\alpha(\nu_k) \longrightarrow I_\alpha\left(\frac{1}{2\pi}\right) \quad \text{as} \quad k \to \infty.
\]

With this, we have
\[
\frac{1}{\text{cap}_\alpha(f^{-k}(E))} \leq I_\alpha(\nu_k) \longrightarrow I_\alpha\left(\frac{1}{2\pi}\right) = \frac{1}{\text{cap}_\alpha(\partial \Delta)},
\]
and so the proof of Proposition 2 will be finished.

Proof of Lemma 13. We will prove it for \(0 < \alpha < 1\); the case \(\alpha = 0\) being similar.

By Lemma 2 (i), we have with an appropriate function \(g_\alpha\) that
\[
I_\alpha(\sigma) = \int_0^1 \int_0^{2\pi} \left| P_\sigma(re^{i\theta}) \right|^2 d\theta g_\alpha(r) dr
\]
for any probability measure \(\sigma\) on \(\partial \Delta\).

Using (3) we have for all \(r \in (0,1)\) that
\[
\int_0^{2\pi} \left| P_{\nu_k}(re^{i\theta}) \right|^2 d\theta \leq \int_0^{2\pi} \left| P_\mu(re^{i\theta}) \right|^2 d\theta.
\]

Since \(\mu\) has finite \(\alpha\)-energy, the right hand side in the last inequality, as a function, belongs to \(L^1(g_\alpha(r) dr)\). Therefore, by using the Lebesgue’s dominated convergence theorem, we would be done if we show that
\[
(15) \quad \int_0^{2\pi} \left| P_{\nu_k}(re^{i\theta}) \right|^2 d\theta \longrightarrow \frac{1}{2\pi} \quad \text{as} \quad k \to \infty,
\]
for each r with $0 < r < 1$.

By definition of ν_k,

$$
\left| P_{\nu_k}(re^{i\theta}) - \frac{1}{2\pi} \right| \leq \frac{1}{2\pi} \int_{\partial\Delta} \left| \frac{1}{f_k(re^{i\theta}) - \xi} \right|^2 d\mu(\xi) - 1 \left| \frac{1}{2\pi} \right| d\mu(\xi).
$$

But, by Schwarz’s lemma, and since f is not a rotation, $|f_k(re^{i\theta})| \to 0$ as $k \to \infty$, uniformly on θ for r fixed.

Therefore, for each r, $P_{\nu_k}(re^{i\theta}) \to 1/2\pi$, as $k \to \infty$, uniformly on θ, and this implies (15). \hfill \square

Even in the case when $\text{cap}_\alpha(E) = 0$, the sets $f^{-k}(E)$ are well spread on $\partial\Delta$.

Proposition 3. If $f : \Delta \to \Delta$ is an inner function (but not a rotation) with $f(0) = 0$, E is any non-empty Borel subset of $\partial\Delta$, and μ is any probability measure on E, then for some absolute constant C and a positive constant A that only depends on $|f'(0)|$, we have that

$$
\left| \nu_k(I) - \frac{|I|}{2\pi} \right| < C e^{-Ak},
$$

for all interval $I \subset \partial\Delta$. In particular,

$$
\nu_k \to \frac{|I|}{2\pi}
$$

in the weak-* topology.

Here ν_k is the probability measure concentrated at $f^{-k}(E)$ such that $P_{\nu_k} = P_{\mu} \circ f^k$.

Proof. It is similar to the proof of Lemma 3 in [P], but using the fact that $P_{\nu_k} = P_{\mu} \circ f^k$ instead of Lemma 1 in [P]. \hfill \square

Corollary. If $f : \Delta \to \Delta$ is inner, then f assume all the values in $\partial\Delta$.

Remark. This last result is true in any dimension as we can prove as a consequence of Lemma 15 (see Section 5).

Indeed, let $f : \mathbb{B}_n \to \Delta$ be an inner function. It is enough to prove that $f^{-1}\{1\} \neq \emptyset$. But,

$$
(16) \qquad u := \text{Re} \left(\frac{1 + f}{1 - f} \right) = \frac{1 - |f|^2}{1 - |f|^2} > 0, \quad \text{in } \mathbb{B}_n.
$$
Therefore, \(u \) is harmonic and positive in \(\mathbb{B}_n \) and so there exists a positive measure in \(S_n \) such that
\[
\text{Re} \left(\frac{1 + f}{1 - f} \right) = P_\mu.
\]

By (16) \(P_\mu \) tends radially to 0 a.e. with respect to Lebesgue measure, since \(f \) is inner and (by Privalov’s theorem, see e.g., [R, Theorem 5.5.9]) \(f \) can assume the value 1 at most in a set of zero Lebesgue measure. Then, the Radon-Nikodym derivative of \(\mu \) with respect to Lebesgue measure is zero a.e., and so \(\mu \) is a singular measure.

By Lemma 15 it follows that \(P_\mu \to \infty \) in a set of full \(\mu \)-measure. But this is the same to say that \(f(r e^{i\theta}) \to 1 \) in that set.

When the inner function \(f \) has order \(k \geq 1 \) at 0, we can improve Theorem 1 in the case \(\alpha = 0 \).

Theorem 3. If \(f : \Delta \to \Delta \) is inner,
\[
f(0) = f'(0) = \cdots = f^{(k-1)}(0) = 0, \quad f^{(k)}(0) \neq 0, \quad (k \geq 1),
\]
and \(E \) is a Borel subset of \(\partial \Delta \), then
\[
(17) \quad \text{cap}_0(f^{-1}(E)) \geq \left(\text{cap}_0(E) \right)^{1/k}.
\]
Moreover, if \(\text{cap}_0(E) > 0 \), equality holds if and only if either \(f(z) = \lambda z^k \), with \(|\lambda| = 1 \), or \(\text{cap}_0(E) = \text{cap}_0(\partial \Delta) \).

Proof. For such a function \(f \), Schwarz’s lemma says us that \(|f(z)| \leq |z|^k \), with equality only if \(f(z) = \lambda z^k \) with \(|\lambda| = 1 \). With this in mind, subordination principle says now that if \(v \) is a subharmonic function in \(\Delta \), then
\[
\int_0^{2\pi} v(f(r e^{i\theta})) \, d\theta \leq \int_0^{2\pi} v(r^k e^{i\theta}) \, d\theta,
\]
with equality only if \(v \) is harmonic or \(f \) is a rotation of \(z^k \).

Now, in order to prove (17), we can assume that \(E \) is closed. If \(\mu_e \) is the equilibrium probability distribution of \(E \) and \(\nu \) is the probability in \(f^{-1}(E) \) such that \(P_\nu = P_\mu \circ f \), then
\[
I_0(\nu) = 2\pi \left(\int_0^1 \int_0^{2\pi} \left| P_{\mu_e}(f(r e^{i\theta})) \right| - \frac{1}{2\pi} \int_0^{2\pi} \frac{d\theta}{r} \right) dr \leq 2\pi \left(\int_0^1 \int_0^{2\pi} \left| P_{\mu_e}(r^k e^{i\theta}) \right| - \frac{1}{2\pi} \int_0^{2\pi} \frac{d\theta}{r} \right) dr.
\]
Substituting \(r^k = t \), we obtain that
\[
I_0(\nu) \leq \frac{1}{k} I_0(\mu_e).
\]
This finishes the proof of (17). The equality statement can be proved in the same way that in Theorem 1.

\[\frac{1}{\text{cap}_\alpha(f^{-1}(E))} - \frac{1}{\text{cap}_\alpha(\partial \Delta)} \leq \frac{C_\alpha}{k^{1-\alpha}} \left(\frac{1}{\text{cap}_\alpha(E)} - \frac{1}{\text{cap}_\alpha(\partial \Delta)} \right). \]

where \(C_\alpha \) is a constant depending only on \(\alpha \).

We expect \(C_\alpha = 1 \), but we have not been able to show this.

5. Distortion of \(\alpha \)-content.

The following is an extension of Löwner’s lemma.

Theorem 4. If \(f : \mathbb{R}^n \rightarrow \Delta \) is inner, \(f(0) = 0 \) and \(E \) is a Borel subset of \(\partial \Delta \), then, for \(0 < \alpha \leq 1 \),

\[M_{2n-2+\alpha}(f^{-1}(E)) \geq C_{\alpha} M_{\alpha}(E) \]

and

\[M_{2(n-1+\alpha)}(f^{-1}(E)) \geq C'_{\alpha} M_{\alpha}(E). \]

Here \(M_\beta \) and \(\mathcal{M}_\beta \) denote, respectively, \(\beta \)-dimensional content with respect to the euclidean metric and the metric in \(\mathbb{S}^n \) given by

\[d(a, b) = |1 - \langle a, b \rangle|^{1/2}, \]

where \(\langle a, b \rangle = \sum a_j \overline{b}_j \) is the inner product in \(\mathbb{C}^n \). This metric is equivalent to the Carnot-Caratheodory metric in the Heisenberg group model for \(\mathbb{S}^n \). We refer to [R] for details about this metric.

Recall that in a metric space \((X, d)\) the \(\alpha \)-content of a set \(E \subset X \) is defined as

\[M_{\alpha}(E) = \inf \left\{ \sum r_i^{\alpha} : E \subset \bigcup_i B_d(x_i, r_i) \right\}. \]

Observe that, as a consequence of Theorem 4, one obtains

Corollary. If \(f : \mathbb{R}^n \rightarrow \Delta \) is inner and \(E \) is a Borel subset of \(\partial \Delta \), then

\[\text{Dim}(f^{-1}(E)) \geq 2n - 2 + \text{Dim}(E) \]
and
\[\text{Dim}(f^{-1}(E)) \geq 2n - 2 + 2 \text{Dim}(E) \]

where Dim and Dim denote, respectively, Hausdorff dimension with respect to the euclidean metric and the metric d.

In order to prove Theorem 4 we will prove a lemma about Poisson integrals. We need to consider the classical Poisson kernel (not normalized)
\[P(\xi, z) = \frac{1 - |z|^2}{|\xi - z|^{2n}} \quad (z \in \mathbb{B}_n, \, \xi \in \mathbb{S}_n), \]

and the invariant Poisson kernel
\[Q(\xi, z) = \frac{(1 - |z|^2)^n}{|1 - \langle z, \xi \rangle|^{2n}} \quad (z \in \mathbb{B}_n, \, \xi \in \mathbb{S}_n). \]

Of course, they coincide if \(n = 1 \). In this section if \(\nu \) is a positive measure in \(\mathbb{S}_n \), we will denote by \(P_\nu \)
\[P_\nu(z) = \int_{\mathbb{S}_n} P(\xi, z) \, d\nu(\xi) \]
and by \(Q_\nu \) the invariant Poisson extension of \(\nu \)
\[Q_\nu(z) = \int_{\mathbb{S}_n} Q(\xi, z) \, d\nu(\xi). \]

Lemma 14. Let \(\mu \) be a finite positive measure in \(\partial \Delta \), and let \(f : \mathbb{B}_n \to \Delta \) be an inner function. Then, there exists a finite measure \(\nu \geq 0 \) in \(\mathbb{S}_n \) such that \(P_\mu \circ f = P_\nu \), and if \(\nu \) has singular part \(\sigma \) and continuous part \(\gamma \), and we denote
\[A = \{ \xi \in \mathbb{S}_n : P_\gamma(r\xi) \to \infty, \text{ as } r \to 1 \} \]
and
\[B = \{ \xi \in \mathbb{S}_n : \exists \lim_{r \to 1} f(r\xi) = f(\xi), |f(\xi)| = 1 \text{ and } \lim_{r \to 1} P_\gamma(r\xi) > 0 \}, \]

then
\[A \cup B \subset f^{-1}(\text{support } \mu) \]
and so
\[\nu(f^{-1}(\text{support } \mu)) = \|\nu\|. \]

The same is true if we replace \(P_\nu \) by \(Q_\nu \) for (possibly) other measure \(\nu' \geq 0 \), and \(A, B \) by the following sets
\[A' = \{ \xi \in \mathbb{S}_n : Q_{\nu'}(r\xi) \to \infty, \text{ as } r \to 1 \}, \]
and

\[B' = \{ \xi \in \mathbb{S}_n : \exists \lim_{r \to 1} f(r\xi) = f(\xi), |f(\xi)| = 1 \text{ and } \lim_{r \to 1} Q_{\gamma'}(r\xi) > 0 \}, \]

where \(\sigma' \) and \(\gamma' \) denote, respectively, the singular and the continuous part of \(\nu' \).

Proof. We will prove the lemma only for the measure \(\nu' \), since the proof of the result for \(\nu \) is similar and more standard.

Let \(U : \Delta \to \mathbb{C} \) be a holomorphic function such that \(\text{Re} \ U = \mu \). Then \(U \circ f \) is also holomorphic and so \(\text{Re} \ (U \circ f) = \mu \circ f \) is pluriharmonic, i.e. harmonic and \(\mathcal{M} \)-harmonic (see e.g. [R, Theorem 4.4.9]). Therefore there exist finite positive measures \(\nu \) and \(\nu' \) in \(\mathbb{S}_n \) such that

\[P_\mu \circ f = P_\nu, \quad P_\mu \circ f = Q_{\nu'}. \]

Let us denote by \(E \) the support of \(\mu \). If \(\xi \in A' \), then \(|f(r\xi)| \to 1 \) as \(r \to 1 \). The curve \(\{ f(r\xi) : \ 0 \leq r < 1 \} \) in \(\Delta \) must end on a unique point \(e^{i\psi} = f(\xi) \in \Delta \), since otherwise we would have \(P_\mu \equiv \infty \) on a set of positive Lebesgue measure. Now, \(e^{i\psi} \in E \), since otherwise \(P_\mu \) vanishes continuously at \(e^{i\psi} \). Therefore \(A' \subset f^{-1}(E) \).

Similarly one sees that \(B' \subset f^{-1}(E) \).

The set \(A' \) has full \(\sigma' \)-measure since by the inequality (20), that we will prove later,

\[\{ \xi \in \mathbb{S}_n : \underline{D} \sigma'(\xi) = \infty \} \subset A', \]

where

\[\underline{D} \sigma'(\xi) = \lim_{r \to 0} \inf \frac{\sigma'(B_d(\xi, r))}{|B_d(\xi, r)|}, \]

and the set \(\{ \xi : \underline{D} \sigma'(\xi) = \infty \} \) has full \(\sigma' \)-measure (see Lemma 15 below). Let us observe that ([R, p.67])

\[|B_d(\xi, r)| \sim r^{2n}. \]

The set \(B' \) has full \(\gamma' \)-measure, since as \(r \to 1 \)

\[Q_{\gamma'}(r\xi) \longrightarrow \frac{d\gamma'}{dL} \quad \text{a.e.} \]

with respect to Lebesgue measure \(L \) (see, e.g., [R, Theorem 5.4.9]) and \(\{ \frac{d\nu'}{dL} > 0 \} \) has full \(\gamma' \)-measure.

Lemma 15. Suppose that \(\mu \) is a singular positive Borel measure (with respect to Lebesgue measure) in \(\mathbb{S}_n \). Then

\[\underline{D} \mu(x) = \infty \quad \text{a.e.} \ \mu. \]
Proof. Let \(A \) be a Borel set such that \(|A| = 0 \), and \(\mu \) is concentrated on \(A \). Define for \(\alpha > 0 \)

\[
A_\alpha = \{ x \in A : D \mu(x) < \alpha \}.
\]

It is enough to prove that \(\mu(A_\alpha) = 0 \), and by regularity that \(\mu(K) = 0 \) for all \(K \) compact subset of \(A_\alpha \).

Fix \(\varepsilon > 0 \). Since \(K \subset A_\alpha \subset A \), \(|K| = 0 \) and so there exists an open set \(V \) with \(K \subset V \) and \(|V| < \varepsilon \) (\(| \cdot | \) denotes Lebesgue measure).

Now, for each \(x \in K \), we can find \(r_x > 0 \) such that

\[
\frac{\mu(B_d(x, r_x))}{|B_d(x, r_x)|} < \alpha \quad \text{and} \quad B_d(x, r_x) \subset V.
\]

The family \(\{ B_d(x, r_x/3) : x \in K \} \) covers \(K \), hence we can extract a finite subcollection \(\Phi \) that also covers \(K \). Now, using a Vitali-type lemma (see, e.g., [R, Lemma 5.2.3]), we can find a disjoint subcollection \(\Gamma \) of \(\Phi \) such that

\[
K \subset \bigcup_{\gamma} B_d(x_\gamma, r_{x_\gamma}).
\]

Note that as a consequence of Proposition 5.1.4 in [R] we have that

\[
\Theta_d := \sup_{\delta} \frac{|B_d(x, r_x)|}{|B_d(x, r_x/3)|} < \infty.
\]

Therefore

\[
\mu(K) \leq \sum_{\gamma} \mu(B_d(x_\gamma, r_{x_\gamma})) < \alpha \sum_{\gamma} |B_d(x_\gamma, r_{x_\gamma})| < \Theta_d \alpha \sum_{\gamma} |B_d(x_\gamma, r_{x_\gamma}/3)| \leq \Theta_d \alpha |V| < \Theta_d \alpha \varepsilon \quad \Box.
\]

Proof of Theorem 4. We will prove only (ii), since (i) is obtained in a similar way.

Assume, as we may, that \(E \) is a closed subset of \(\partial \Delta \) and \(M_\alpha(E) > 0 \). Then, see e.g. [T, p.64], there exists a positive mass distribution on \(E \) of finite total mass, such that:

(a) \(\mu(E) = M_\alpha(E) \),

(b) \(\mu(I) \leq C_\alpha |I|^\alpha \) for any open interval \(I \), where \(C_\alpha \) is a constant independent of \(E \). An standard argument shows that

\[
P_\mu(z) \leq \frac{C_\alpha}{(1 - |z|)^{1-\alpha}}, \quad (z \in \Delta),
\]

with \(C_\alpha \) a new constant. Let \(\nu' \geq 0 \) be a measure in \(S_n \) such that \(P_\mu \circ f = Q_{\nu'} \). Schwarz’s lemma (see e.g. [R, Theorem 8.1.2]) and (18) give the same inequality for \(\nu \),

\[
Q_{\nu'}(z) \leq \frac{C_\alpha}{(1 - \|z\|)^{1-\alpha}}, \quad (z \in \mathbb{B}_n).
\]
We claim now that also we have

\begin{equation}
Q_\nu(z) \geq C_n \frac{\nu'(B_d(\xi, (2(1 - \|z\|))^{1/2}))}{(1 - \|z\|)^n}, \quad (z \in \mathbb{B}_n),
\end{equation}

where \(\xi = z/\|z\| \) and \(B_d(\xi, R) \) denotes the \(d \)-ball with center \(\xi \) and radius \(R \).

Now, using (19) and (20), we obtain that

\begin{equation}
\nu'(B_d(\xi, R)) \leq C_{n,\alpha} R^{2(n-1+\alpha)}, \quad (\xi \in \mathbb{S}_n, R > 0).
\end{equation}

If we cover the set \(A' \cup B' \) (see Lemma 14) with \(d \)-balls of radii \(R_i \), we see by (21) that

\[\nu'(A' \cup B') \leq C_{n,\alpha} \sum_i R_i^{2(n-1+\alpha)} \]

and so

\[\|\nu'\| = \nu'(A' \cup B') \leq C_{n,\alpha} \mathcal{M}_{2(n-1+\alpha)}(A' \cup B') \leq C_{n,\alpha} \mathcal{M}_{2(n-1+\alpha)}(f^{-1}(E)). \]

So, since \(f(0) = 0 \),

\[\mathcal{M}_\alpha(E) = \|\mu\| = \|\nu'\| \leq C_{n,\alpha} \mathcal{M}_{2(n-1+\alpha)}(f^{-1}(E)). \]

Therefore, in order to finish the proof, it remains only to prove (20). Observe first that we can assume that \(\xi = e_1 = (1,0,\ldots,0) \) since \(d \) is invariant under the unitary transformations of \(\mathbb{S}_n \) for the inner product \(\langle \cdot, \cdot \rangle \). Now, if \(z = re_1 \), write \(\delta^2 = 2(1 - r) \). If \(\eta \in B_d(e_1, \delta) \), then

\[\|1 - r\eta\| \leq \|1 - \eta\| + \|\eta\|(1 - r) \leq 3(1 - r). \]

Hence, if \(\eta \in B_d(e_1, \delta) \)

\[Q(\eta, z) = \left(\frac{1 - r^2}{\|1 - r\eta\|^2} \right)^n \geq \frac{9^{-n}}{(1 - r)^n}. \]

Since \(Q \) is invariant under the action of the unitary group for the inner product \(\langle \cdot, \cdot \rangle \) in \(\mathbb{S}_n \), we obtain that if \(z = r\xi \) and \(\eta \in B_d(\xi, \delta) \), then

\[Q(\eta, z) \geq \frac{9^{-n}}{(1 - r)^n}. \]

Finally,

\[Q_\nu(z) \geq \int_{B_d(\xi, \delta)} Q(\eta, z) \, d\nu(\eta) \geq 9^{-n} \frac{\nu(B_d(\xi, \delta))}{(1 - r)^n}. \]

\[\square \]
6. An open question.

We have discussed how inner functions distort boundary sets. There are some results on how they distort subsets of Δ. On the one hand Hamilton [H] has shown that for all Borel subset E of Δ,

$$H_\alpha(f^{-1}(E)) \geq H_\alpha(E), \quad 0 < \alpha \leq 1,$$

where H_α denotes α-Hausdorff measure.

One naturally expects the following to be true:

If $f : \Delta \to \Delta$ is inner, $f(0) = 0$ and E is a Borel subset of Δ, then

$$\text{cap}_\alpha(f^{-1}(E)) \geq \text{cap}_\alpha(E).$$

This we can prove only if $\alpha = 0$. The idea comes from [P1, p.336].

Theorem 5. Let $f : \Delta \to \Delta$ be an inner function. If for some $k \geq 1$

$$f(0) = f'(0) = \cdots = f^{(k-1)}(0) = 0, \quad f^{(k)}(0) \neq 0,$$

then,

$$\text{cap}_0(f^{-1}(E)) \geq (\text{cap}_0(E))^{1/k},$$

for all Borel subsets of Δ. Moreover, this inequality is sharp.

Sketch of proof. By approximation, it is enough to prove it if E is closed and f is a finite Blaschke product. Let f be

$$f(z) = z^k \prod_{j=1}^d e^{i\nu_j} \frac{z - a_j}{1 - \overline{a}_j z}.$$

Denote by g_E, g_F the Green’s functions of $\mathbf{C} \setminus E$ and $\mathbf{C} \setminus F$ (here $F = f^{-1}(E)$) with pole at ∞. Therefore,

$$g_E(z) - \log |z| = \log \frac{1}{\text{cap}_0(E)} + O(|z|^{-1}),$$

$$g_F(z) - \log |z| = \log \frac{1}{\text{cap}_0(F)} + O(|z|^{-1}),$$

as $|z| \to \infty$. Moreover, since $k \geq 1$

$$g_E(f(z)) - k \log |z| = \log \frac{1}{\text{cap}_0(E)} + O(|z|^{-1}),$$
as $|z| \to \infty$. It is easy to see that

$$g_{E}(f(z)) - \sum_{j=1}^{d} g_{F}(z, \overline{a}_{j}^{-1})$$

is harmonic in $\mathbb{C} \setminus (F \cup (\cup_{j=1}^{d} \{ \overline{a}_{j}^{-1} \}))$ and it is bounded at the points \overline{a}_{j}^{-1} (here $g_{F}(z, \overline{a}_{j}^{-1})$ denotes the Green’s function of $\hat{\mathbb{C}} \setminus F$ with pole at \overline{a}_{j}^{-1}). Therefore, the function

$$(22) \quad G(z) = \frac{1}{k} g_{E}(f(z)) - g_{F}(z) - \frac{1}{k} \sum_{j=1}^{d} g_{F}(z, \overline{a}_{j}^{-1})$$

is harmonic in $\hat{\mathbb{C}} \setminus F$. Since $G = 0$ on F, it follows that $G \equiv 0$.

Now, by using the symmetry of Green’s function, we have that

$$g_{F}(z, \overline{a}_{j}^{-1}) \longrightarrow g_{F}(-\overline{a}_{j}^{-1}), \quad \text{as} \quad |z| \to \infty,$$

and so, from (22),

$$(23) \quad \log \frac{1}{\text{cap}_{0}(E)} - \log \prod_{j=1}^{d} |a_{j}| - k \log \frac{1}{\text{cap}_{0}(F)} - \sum_{j=1}^{d} g_{F}(\overline{a}_{j}^{-1}) = 0.$$

On the other hand, since $F \subset \Delta$, the maximum principle says that

$$g_{F}(z) \geq g_{\Delta}(z) = \log |z|.$$

Hence, from (23), we obtain that

$$\log \frac{1}{\text{cap}_{0}(E)} - \log \prod_{j=1}^{d} |a_{j}| - k \log \frac{1}{\text{cap}_{0}(F)} \geq \sum_{j=1}^{d} \log |a_{j}|^{-1},$$

and the inequality in the theorem follows. Finally, the inequality is sharp as is shown by taking $f(z) = z^{k}$, and E an arc on $\{|z| = r\}$, $0 < r < 1$. □

References.

