Capacity distortion by inner functions
in the unit ball of \mathbb{C}^n

Domingo Pestana and José M. Rodríguez

Universidad Carlos III de Madrid
1. Introduction.

An inner function is a bounded holomorphic function from the unit ball B_n of \mathbb{C}^n into the unit disk Δ of the complex plane such that the radial boundary values have modulus 1 almost everywhere. If E is a non-empty Borel subset of $\partial \Delta$, we denote by $f^{-1}(E)$ the following subset of the unit sphere S_n of \mathbb{C}^n

$$f^{-1}(E) = \{ \xi \in S_n : \lim_{r \to 1} f(r\xi) \text{ exists and belongs to } E \}. $$

There is a classical lemma of Löwner, see e.g. [R, p. 405], [T, p. 322], about the distortion of boundary sets under inner functions:

Löwner’s lemma. An inner function f, with $f(0) = 0$, is a measure preserving transformation when viewed as a mapping from S_n to $\partial \Delta$, i.e. if E is a Borel subset of $\partial \Delta$ then $|f^{-1}(E)| = |E|$, where in each case $| \cdot |$ means the corresponding normalized Lebesgue measure.

Here we extend this result to fractional dimensions as follows:

Theorem 1. If f is inner in the unit ball of \mathbb{C}^n ($n \geq 1$), $f(0) = 0$, and E is a Borel subset of $\partial \Delta$, we have:

i) If $0 < \alpha < 2$, (and also $\alpha = 0$ if $n = 1$), then

$$\text{cap}_{2n-2+\alpha}(f^{-1}(E)) \geq C(n, \alpha) \text{cap}_\alpha(E).$$

ii) If $\alpha = 0$ and $n > 1$, then

$$\frac{1}{\text{cap}_{2n-2}(f^{-1}(E))} \leq C(n) \left(1 + \log \frac{1}{\text{cap}_0(E)} \right).$$

Here cap_α and cap_0 denote, respectively, α-dimensional Riesz capacity and logarithmic capacity with respect to the distance in S_n given by

$$d(a, b) = |1 - \langle a, b \rangle|^{1/2},$$

where

$$\langle a, b \rangle = \sum_{j=1}^{n} a_j \overline{b_j}$$

is the usual inner product in \mathbb{C}^n. This non-isotropic distance is the natural one in the analysis of problems concerning S_n. Also, this distance is equivalent to the Carnot-Carathéodory distance in the Heisenberg group model for S_n. We refer to [R] for details about this distance. Also we refer to [C], [KS] and [L] for definitions and basic background on capacity.

Observe that, as a consequence of Theorem 1, one obtains

Corollary. If $f : B_n \to \Delta$ is inner and E is a Borel subset of $\partial \Delta$, then

$$\text{Dim}(f^{-1}(E)) \geq 2n - 2 + \text{Dim}(E)$$

2
where Dim denotes \textit{Hausdorff dimension} with respect to the distance d.

Analogous results with the euclidean distance instead of d were obtained in [FPR]. Also, for some applications of these results we refer to [FP1], [FP2] and [FPR].

The basic tool that we will use to prove (1.1) is a formula relating the α-energy J_α of a complex measure μ (see [L] for basic background on this subject) with its invariant Poisson extension \mathcal{P}_μ. This approach is due to Beurling [B].

Theorem 2. If μ is a complex measure supported on S_n, the unit sphere of \mathbb{C}^n, we have, for all $n \geq 1$ and $0 < \alpha < 2n$, that

\[J_\alpha(\mu) \asymp \int_0^1 \left\{ \int_{S_n} |\mathcal{P}_\mu(r\xi)|^2 \, d \xi \right\} r^{\alpha/2-1}(1 - r^2)^{(n-\alpha)/2-1} \, dr. \]

(1.4)

Here and hereafter the expression $A \asymp B$ will mean that the quotient A/B is bounded above and below by constants which can depend at most on n and α.

Recall that the invariant Poisson extension \mathcal{P}_μ of a complex measure μ (supported in S_n) is defined as follows

\[\mathcal{P}_\mu(z) = \int_{S_n} \mathcal{P}(z, w) \, d\mu(w), \quad z \in B_n, \]

where

\[\mathcal{P}(z, w) = \frac{(1 - |z|^n)^n}{\omega_{2n} |1 - \langle z, w \rangle|^n}, \quad z \in B_n, \quad w \in S_n, \]

is the Poisson-Szegö kernel ([R, p. 40], [F]) and ω_{2n} is the area of S_n. Observe that if $\alpha = 1$, the Poisson-Szegö kernel is simply the classical Poisson kernel.

Also, if μ is a complex measure on S_n, and $0 \leq \alpha < 2n$, then the α-energy $J_\alpha(\mu)$ of μ is defined as

\[J_\alpha(\mu) = \iint_{S_n \times S_n} \Phi_\alpha(d(\xi, \eta)) \, d\mu(\xi) \, d\mu(\eta), \]

where

\[\Phi_\alpha(t) = \begin{cases}
\log \frac{1}{t}, & \text{if } \alpha = 0, \\
\frac{1}{t^{\alpha}}, & \text{if } 0 < \alpha < 2n.
\end{cases} \]

If E is a closed subset of S_n, then

\[(\text{cap}_\alpha(E))^{-1} = \inf \{ J_\alpha(\mu) : \mu \text{ a probability measure supported on } E \}, \]

for $0 < \alpha < 2n$,

\[\log \frac{1}{\text{cap}_0(E)} = \inf \{ J_0(\mu) : \mu \text{ a probability measure supported on } E \}, \]

and the infimum is attained by a unique probability measure μ_α which is called the \textit{equilibrium distribution} of E.

3
If \(E \) is any Borel subset of \(S_n \), then the \(\alpha \)-capacity of \(E \) is defined as

\[
\text{cap}_\alpha (E) = \sup \{ \text{cap}_\alpha (K) : K \subset E, \text{ } K \text{ compact} \}.
\]

The analogue of (1.4) with the euclidean distance instead of \(d \) was obtained in [FPR]; it is remarkable that in [FPR] equality is obtained with an explicit constant (see Theorem B below).

In order to prove Theorem 2 we will need a result about the integral of the square of a hypergeometric function that appears in [PR].

Theorem A. [PR] For all non negative integers \(p, q, n (n \geq 1) \) and for all \(\beta = \alpha/4, (0 < \beta < n/2) \), we have

\[
\int_0^1 \left(\frac{F(t)}{F(1)} \right)^2 t^{p+q+\beta-1}(1-t)^{n-2\beta-1} \, dt \leq \left[\frac{\Gamma(p+\beta)\Gamma(q+\beta)}{\Gamma(p+n-\beta)\Gamma(q+n-\beta)} \right],
\]

where \(F(t) = F(p, q; p + q + n; t) \).

By \(F(a, b; c; t) \) we denote the usual Gauss hypergeometric function

\[
F(a, b; c; t) = \sum_{k=0}^{\infty} \frac{(a)_k(b)_k}{(c)_k} \frac{t^k}{k!},
\]

where \((u)_k\) is the Pochhammer symbol,

\[
(u)_k = u(u+1)\cdots(u+k-1) = \frac{\Gamma(u+k)}{\Gamma(u)},
\]

and \(\Gamma(\cdot)\) denotes the Gamma function.

The outline of this paper is as follows: In Section 2 we will prove Theorem 2. Theorem 1 will be proved in Section 3.

We would like to thank J. L. Fernández for many useful discussions.

Notations. By \(C \) we will denote a constant, depending at most on \(n \) and \(\alpha \), which can change its value from line to line and even in the same line.

2. Proof of Theorem 2.

If we use the kernel \(\Phi_\alpha(\|K - \eta\|) \) instead of \(\Phi_\alpha(d(\xi, \eta)) \) we obtain the classical \(\alpha \)-dimensional Riesz energy that we will denote by \(I_\alpha(\mu) \). Observe that if \(n = 1 \), then \(I_{\alpha/2}(\mu) = J_\alpha(\mu) \), for all \(0 < \alpha < 2 \), and also, \(I_0(\mu)/2 = J_0(\mu) \). This remark and the following theorem give the case \(n = 1 \) of Theorem 2, with equality for an appropriate constant instead of the symbol \(\asymp \).

Theorem B. [FPR] If \(\mu \) is a complex measure supported on \(\Sigma_{N-1} \), the unit sphere of \(\mathbb{R}^N \), and \(P_\mu \) is its classical Poisson extension (\(P_\mu = P_{\mu^c} \) if \(N = 2 \)), we have:
i) If \(0 < \alpha < N - 1\), then

\[
I_\alpha(\mu) = K(N, \alpha) \int_0^1 \left\{ \int_{\Sigma_{N-1}} |P_\mu(r\xi)|^2 \, d\xi \right\} r^{\alpha-1}(1 - r^2)^{N-2-\alpha} \, dr,
\]
with

\[
K(N, \alpha) = \frac{4\pi^{N/2}}{\Gamma\left(\frac{\alpha}{2}\right)\Gamma\left(\frac{N-\alpha}{2}\right)}.
\]

ii) If \(m = \mu(\Sigma_{N-1})\), then

\[
I_0(\mu) = \omega_N \int_0^1 \int_{\Sigma_{N-1}} \frac{P_\mu(r\xi) - m}{\omega_N} \xi d\xi \left(1 - r^2\right)^{N-2} \frac{dr}{r} + \frac{4\pi}{2} \left[\frac{\Gamma'}{\Gamma(\frac{N}{2})} - \frac{\Gamma'}{\Gamma(N - 1)} \right].
\]

where \(\omega_N\) denotes the area of \(\Sigma_{N-1}\). In particular, if \(N = 2\),

\[
I_0(\mu) = 2\pi \int_0^1 \int_0^{2\pi} \frac{P_\mu(re^{i\theta}) - \frac{m}{2\pi}}{dr} \, dl \, dr.
\]

Observe that in [FPR] Theorem B was proved only for signed measures, but the result, stated in the actual form, follows simply by splitting \(\mu\) into real and imaginary parts.

In [F], G. B. Folland obtained an expansion in spherical harmonics of the Poisson-Szegö kernel for the unit ball \(B_n\) in \(\mathbb{C}^n\). Let \(\Delta_{B_n}\) be the Laplace-Beltrami operator associated to the Bergman metric on \(B_n\).

\[
\Delta_{B_n} = \frac{4}{n+1} (1 - |z|^2) \sum_{i,j=1}^n (\delta_{ij} - \bar{z}_i z_j) \frac{\partial^2}{\partial z_i \partial \bar{z}_j}.
\]

\(\Delta_{B_n}\) is the basic invariant differential operator on the symmetric space \(SU(n,1)/U(n) \approx B_n\). The solution of the Dirichlet problem

\[
\begin{cases}
\Delta_{B_n} u = 0, & \text{in } B_n, \\
u = f, & \text{in } \partial B_n,
\end{cases}
\]

with continuous boundary data \(f\), is given by the following representation formula

\[
u(z) = \int_{\partial B_n} P(z, w) f(w) \, dw.
\]

If \(\mathcal{H}^{p,q}\) denotes the linear space of restrictions to \(S_n\) of harmonic polynomials \(g(z, \xi)\) on \(\mathbb{C}^n\) which are homogeneous of degree \(p\) in \(z\) and degree \(q\) in \(\xi\), the solution of the Dirichlet problem (2.1) with \(f \in \mathcal{H}^{p,q}\) is given by

\[
u(r\xi) = S^{p,q}(r) f(\xi), \quad 0 \leq r \leq 1, \ \xi \in S_n,
\]

where

\[
S^{p,q}(r) = r^{p+q} \frac{F(p,q;p+q+n;r^2)}{F(p,q;p+q+n;1)}.
\]
The formula (2.2) gives to $S^{p,q}(r)$ a crucial role in order to obtain the expansion of the Poisson-Szegö kernel in spherical harmonics.

In [PR] we give uniform asymptotic estimates of these functions when p, q grow to infinity:

Theorem C ([PR]). There exists a universal constant C, not depending on $n, q, m, z,$ such that, for all real numbers, $m, n, q \geq 1$, $q \geq \frac{1}{m}$, $0 \leq z < 1$, if we denote

$$G = F(mq, q; mq + q + n; z) B(mq, q + n),$$

where $B(x, y)$ is the usual Euler's Beta-function, then

$$G \geq C L$$

where

$$L = t_0^{m,q}(1 - m(1 - t_0))^q(1 - t_0)^n - 1 \left(\frac{1 - z}{a^2 - b^2 z}\right)^{1/4} \frac{1}{m \sqrt{q + 1}},$$

and

$$t_0 = \frac{a + b z - \sqrt{(1 - z)(a^2 - b^2 z)}}{2z} = \frac{2}{a + b z + \sqrt{(1 - z)(a^2 - b^2 z)}},$$

$$a = 1 + \frac{1}{m}, \quad b = 1 - \frac{1}{m}.$$

Besides, the inequality is sharp in the sense that

$$\lim_{q \to \infty} \frac{G}{L} = \sqrt{2\pi}.$$

Observe that without loss of generality we can suppose $m \geq 1$, because of the symmetry of the hypergeometric function in the two first parameters.

We summarize the results about these spherical harmonics (see e.g. [F]) in the following result. This Theorem generalizes the properties of classical spherical harmonics, which are described in [SW].

Theorem D [F]. For all $n \geq 2$, we have that:

i) $L^2(S_n)$ is the orthogonal sum $L^2(S_n) = \bigoplus_{p,q=0}^{\infty} \mathcal{H}^{p,q}$ and the dimension of $\mathcal{H}^{p,q}$ is

$$D = D(p, q; n) = \frac{(p + q + n - 1)(p + q + n - 2)!(q + n - 2)!}{p!q!(n - 1)!(n - 2)!}.$$

ii) If $f_1^{p,q}, f_2^{p,q}, \ldots, f_D^{p,q}$ is any orthonormal basis for $\mathcal{H}^{p,q}$, then

$$\sum_{j=1}^{D} f_j^{p,q}(\xi) \overline{f_j^{p,q}(\eta)} = \mathcal{H}^{p,q}(\langle \xi, \eta \rangle), \quad \xi, \eta \in S_n,$$

where $\mathcal{H}^{p,q}(\langle \cdot, \eta \rangle)$ is the zonal harmonic of degrees p and q, and pole η.

6
iii) The L^2-norm of the function $H^{p,q}(\xi, \cdot)$ is

\begin{equation}
\int_{S_n} |H^{p,q}(\xi, \eta)|^2 \, d\eta = \frac{D}{\omega_{2n}}, \quad \text{for all } \xi \in S_n,
\end{equation}

where $d\eta$ denotes the usual Lebesgue surface measure in S_n (not normalized).

iv) The function $H^{p,q}$ has the following explicit expression in terms of the Jacobi polynomials:

\begin{equation}
H^{p,q}(z) = \frac{D}{\omega_{2n}} \rho^{u-v} e^{i(p-q)\theta} \frac{P^{(n-2,u-v)}_v(n-2,u-v)}{P^{(n-2,u-v)}_v(1)}.
\end{equation}

where $z = \rho e^{i\theta}$, $u = \max\{p, q\}$, $v = \min\{p, q\}$ and $P^{(a,b)}_m(t)$ is the Jacobi polynomial of degree m and parameters a, b ([L1, p. 275], [AS, p. 785]; observe that in [F] there is a typing mistake in the definition of these polynomials).

Moreover, $\{H^{p,q}(z)\}_{p,q=0}^{\infty}$ is an orthogonal basis of $L^2(\{|z| < 1\})$ with respect to the measure $(1 - |z|^2)^{n/2} \, dz \, d\eta$ (since every polynomial in the variables z and \bar{z} can be expressed as a finite linear combination of $\{H^{p,q}(z)\}_{p,q=0}^{\infty}$).

v) For $0 \leq r < 1$ and $\xi, \eta \in S_n$, we have that

\begin{equation}
P(r, \eta) = \sum_{p,q=0}^{\infty} S^{p,q}(r) H^{p,q}(\xi, \eta).
\end{equation}

We need to obtain the expansion of the integral kernel $\Phi_{\alpha}(d(\xi, \eta))$ in terms of these spherical harmonics.

First, fix α, with $0 < \alpha < 2n$, and let $\beta = \alpha/4$. If we denote by $g(z)$ the function of one complex variable,

\begin{equation}
g(z) = \frac{1}{|1 - z|^{n/2}} = \frac{1}{|1 - z|^{\beta}}, \quad |z| < 1,
\end{equation}

then we can express the kernel $\Phi_{\eta}(d(\xi, \eta))$ in terms of g as

$$\Phi_{\eta}(d(\xi, \eta)) = g(\langle \xi, \eta \rangle).$$

Now, develop $g(z)$ as a Fourier series in the following way:

Lemma 1. For all $n \geq 2$ and $0 < \beta < n/2$, we have the Fourier expansion

$$g(z) = \sum_{p,q=0}^{\infty} g^{p,q} H^{p,q}(z),$$

where $g^{p,q}$ has the expression

\begin{equation}
g^{p,q} = 2^n \frac{\Gamma(n-2\beta)}{\Gamma(\beta)^2} \frac{\Gamma(p+\beta) \Gamma(q+\beta)}{\Gamma(p+n-\beta) \Gamma(q+n-\beta)}.
\end{equation}
In order to prove this result we will need the following

Lemma 2. For all $0 \leq \rho < 1$, $\beta > 0$ and all integer m, we have that

\[
(2.10) \quad \int_0^{2\pi} \frac{e^{im\theta}}{1 - \rho e^{i\theta}} \, d\theta = 2\pi \rho^{\frac{|m| + \beta}{|m|}} \Gamma(|m| + \beta) \Gamma(\beta) F(\beta, |m| + \beta; |m| + 1; \rho^2).
\]

Proof of Lemma 2. Without loss of generality we can assume that $m \geq 0$, since the case $m < 0$ will follow by conjugation. We have that

\[
\int_0^{2\pi} e^{im\theta} (1 - \rho e^{i\theta})^{-3} (1 - \rho e^{-i\theta})^{-3} \, d\theta = \int_0^{2\pi} e^{im\theta} \left(\sum_{k=0}^{\infty} \frac{(\beta)_{k}}{k!} \rho^k e^{ik\theta} \right) \left(\sum_{j=0}^{\infty} \frac{(\beta)_{j}}{j!} \rho^j e^{-ij\theta} \right) \, d\theta
= 2\pi \sum_{k=0}^{\infty} \frac{(\beta)_{k}}{k!} \frac{(-\beta)_{k+m}}{(k+m)!} \rho^{2k+m}
\]

and the lemma follows by substituting the definition of the Pochhammer symbols and using the definition of the hypergeometric function. Q.E.D.

Proof of Lemma 1. We will use in this proof the notation $\langle \phi, \psi \rangle$ to denote the usual scalar product in $L^2(\{|z| < 1\})$ with respect to the measure $(1 - |z|^2)^{n-2} \, dx \, dy$. This will not cause confusion since we will not use the inner product in C^n along this proof.

We have that

\[
(2.11) \quad g^{p,q} = \frac{\langle g, H^{p,q} \rangle}{\langle H^{p,q}, H^{p,q} \rangle}.
\]

We recall that [R, p. 15]

\[
(2.12) \quad \int_{S_n} \varphi(\langle \xi, \eta \rangle) \, d\eta = \frac{(n-1) \omega_{2n}}{\pi} \int_0^{2\pi} \int_0^{\pi} \varphi(\rho e^{i\theta}) (1 - \rho^2)^{n-2} \rho \, d\rho \, d\theta,
\]

for all $\varphi \in L^1(\{|z| < 1\})$ with respect to the measure $(1 - |z|^2)^{n-2} \, dx \, dy$. Using (2.5) and (2.12), we deduce that

\[
\frac{D}{\omega_{2n}} = \int_{S_n} |H^{p,q}(\langle \xi, \eta \rangle)|^2 \, d\eta = \frac{(n-1) \omega_{2n}}{\pi} \int_0^{2\pi} \int_0^{\pi} |H^{p,q}(\rho e^{i\theta})|^2 (1 - \rho^2)^{n-2} \rho \, d\rho \, d\theta,
\]

and then

\[
(2.13) \quad \langle H^{p,q}, H^{p,q} \rangle = \frac{\pi D}{(n-1) \omega_{2n}^2}.
\]

On the other hand, since $|p - q| = u - v$,

\[
\langle g, H^{p,q} \rangle = \frac{D}{\omega_{2n} P_{r}^{(n-2, u-v)}(1)} \int_0^{2\pi} \int_0^{\pi} e^{i(\gamma - p)\theta} \rho^{\frac{(n-2, u-v)}{2} - 1} P_{r}^{(n-2, u-v)}(2\rho^2 - 1) \rho^{u-v} (1 - \rho^2)^{n-2} \, d\theta \, d\rho
\]

\[
= \frac{2\pi D}{\omega_{2n} P_{r}^{(n-2, u-v)}(1)} \frac{\Gamma(u - v + \beta)}{(u - v) \Gamma(\beta)} \int_0^{1} F(\beta, u - v + \beta; u - v + 1; \rho^2) P_{r}^{(n-2, u-v)}(2\rho^2 - 1) \rho^{2(u-v)} (1 - \rho^2)^{n-2} \, d\rho
\]

8
By making the variable change $t = 2\rho^2 - 1$, we obtain that

$$
\langle g, H^{\rho,\beta} \rangle = \frac{2\pi D}{2^{n-u-v} \omega_{2n}} \frac{\Gamma(u - v + \beta)}{(u - v)! \Gamma(\beta)} \int_{-1}^{1} F(\beta, u - v + \beta; u - v + 1; (1 + t)/2) P_v^{(n-2, u-v)}(t) (1-t)^{n-2}(1+t)^{u-v} \, dt.
$$

If we denote by (ϕ, ψ) the scalar product in $L^2[-1, 1]$ with respect to the measure $(1-t)^{n-2}(1+t)^{u-v} \, dt$, then the above formula can be written as

(2.14) $$
\langle g, H^{\rho,\beta} \rangle = \frac{2\pi D}{2^{n-u-v} \omega_{2n}} \frac{\Gamma(u - v + \beta)}{(u - v)! \Gamma(\beta)} (F, P_v^{(n-2, u-v)}) \cdot (F, P_v^{(n-2, u-v)})
$$

where F denotes the hypergeometric function $F(\beta, u - v + \beta; u - v + 1; (1 + t)/2)$.

It is known by [L2, p. 29] that

$$
G(w) = F(a_1, a_2; a_3; (1 + w)t) = \sum_{v=0}^{\infty} C_v P_v^{(a,b)}(w),
$$

where

$$
C_v = \frac{(a_1)_v(a_2)_v(2t)^v}{(a_3)_v(v + \lambda)_v} 3F_2(b + 1 + v, a_1 + v, a_2 + v; \lambda + 1 + 2v, a_3 + v; 2t).
$$

Here $3F_2$ is the following generalized hypergeometric function:

$$
3F_2(a_1, a_2, a_3; \beta_1, \beta_2; t) = \sum_{k=0}^{\infty} \frac{(a_1)_k(a_2)_k(a_3)_k}{(\beta_1)_k(\beta_2)_k} \frac{t^k}{k!}.
$$

This gives

(2.15) $$
\frac{(G, P_v^{(a,b)})}{(P_v^{(a,b)}, P_v^{(a,b)})} = C_v
$$

for all $t < 1/2$. Then by making $t \to 1/2$, we obtain that (2.15) is also true for $t = 1/2$. Therefore,

$$
(F, P_v^{(n-2, u-v)}) = C_v (P_v^{(n-2, u-v)}, P_v^{(n-2, u-v)})
$$

$$
= \frac{(\beta)_v(u - v + \beta)_v}{(u - v + 1)_v(u + n + 1 - v)_v} 3F_2(u + 1, v + \beta, u + v + n, u + v + n + 1; 1) (P_v^{(n-2, u-v)}, P_v^{(n-2, u-v)})
$$

$$
= \frac{(\beta)_v(u - v + \beta)_v}{(u - v + 1)_v(u + n + 1 - v)_v} F(v + \beta, u + \beta; u + v + n, u + v + n + 1) \frac{2^{u+v+n-1}}{u + v + n - 1} \frac{(u + n - 2)!}{u!}.
$$

where we have used the fact that ([L1, p. 276], [A.S. p. 774])

$$
(P_v^{(a,b)}, P_v^{(a,b)}) = \frac{2^{a+b+1}}{2(a+b+1)!} \frac{\Gamma(v + a + 1) \Gamma(v + b + 1)}{\Gamma(v + a + b + 1)}.
$$

Hence, using Gauss summation formula ([L1, p. 99], [A.S. p. 556]),

$$
F(a, b, c; 1) = \frac{\Gamma(c) \Gamma(c - a - b) \Gamma(c - b)}{\Gamma(c - a) \Gamma(c - b)} \quad \text{if} \quad c - a - b > 0,
$$

9
we obtain that
\[
(F, P_v^{(n-2, u-v)}) = 2^{u-v+n-1}(\beta)_v (u - v + \beta)_v \frac{(v + n - 2)! (u - v)! \Gamma(n - 2\beta)}{v! \Gamma(u + n - \beta) \Gamma(v + n - \beta)}.
\]

By substituting this formula (which has sense since \(n - 2\beta > 0\)) in (2.14) we obtain that
\[
\langle g, H^{p,q} \rangle = \frac{(n-2)\pi D \Gamma(n-2\beta)}{\omega_{2n}} \frac{\Gamma(\beta)^2}{\Gamma(n-2\beta)} \frac{\Gamma(u + \beta) \Gamma(v + \beta) \Gamma(u + n - \beta) \Gamma(v + n - \beta)}{\Gamma(p + \beta) \Gamma(q + \beta)}.
\]

(2.16)

where we have used the fact that ([L1, p. 274], [A S, p. 774])
\[
P_v^{(n-2, u-v)}(1) = \frac{(v + n - 2)!}{v! (n - 2)!}.
\]

The lemma follows now by substituting (2.13) and (2.16) in (2.11), and by using that \(\omega_{2n} = 2\pi^n / (n - 1)!\).

Q.E.D.

Proof of Theorem 2. We choose an orthonormal basis \(\{ f_{j}^{p,q} \}_{j=1}^{D} \) of \(H^{p,q} \), for each \(p, q \geq 0 \). Let \(\{ \mu_{j}^{p,q} \} \), \(p, q \geq 0 \), \(1 \leq j \leq D = D(p,q;n) \), be the Fourier coefficients of \(\mu \), i.e.,

\[
\mu \sim \sum_{p,q=0}^{\infty} \sum_{j=1}^{D} \mu_{j}^{p,q} f_{j}^{p,q}.
\]

Recall that \(P_{\mu} \) is defined by
\[
P_{\mu}(r \xi) = \int_{S_{n}} P(r \xi, \eta) d\mu(\eta),
\]

where \(P(r \xi, \eta) \) is the Poisson-Szegö kernel
\[
P(r \xi, \eta) = \frac{1}{\omega_{2n}} \left(\frac{1 - r^2}{1 - r\xi \eta} \right)^{n}, \quad 0 \leq r < 1, \ \xi, \eta \in S_{n}.
\]

Recalling (2.4) and (2.7) we deduce that
\[
P(r \xi, \eta) = \sum_{p,q=0}^{\infty} S^{p,q}(r) H^{p,q}(r, \eta) = \sum_{p,q,j} S^{p,q}(r) f_{j}^{p,q}(r) f_{j}^{p,q}(\eta).
\]

Now, Plancherel’s theorem gives that
\[
P_{\mu}(r \xi) = \sum_{p,q,j} S^{p,q}(r) \mu_{j}^{p,q} f_{j}^{p,q}(\xi).
\]

Using again Plancherel’s theorem we obtain that
\[
\int_{S_{n}} |P_{\mu}(r \xi)|^2 d\xi = \sum_{p,q,j} (S^{p,q}(r))^2 |\mu_{j}^{p,q}|^2,
\]

and so if we denote by \(\Lambda \) the right hand side in (1.4), we have that (recall that \(\beta = \alpha/4 \))
\[
\Lambda = \sum_{p,q,j} |\mu_{j}^{p,q}|^2 \int_{0}^{1} (S^{p,q}(r))^2 r^{2\beta-1} (1 - r^2)^{n-2\beta-1} dr.
\]
and, substituting \(r^2 = t \), we get by using the definition of \(S_{p,q}^\beta(t) \) that

\[
\Lambda = \frac{1}{2} \sum_{p,q,j} \mu_{j}^{p,q} t^{\frac{1}{2}} \int_{0}^{1} \left(\frac{F(p,q; p + q + n; t)}{F(p,q; p + q + n; 1)} \right)^2 t^{p+q+\beta-1}(1-t)^{n-2-\beta-1} dt
\]

(2.17)

\[
\cong \sum_{p,q,j} \frac{\Gamma(p + \beta)}{\Gamma(p + n - \beta)} \sum_{j=1}^{D} \mu_{j}^{p,q} t^{\frac{1}{2}} \mu_{j}^{p,q} \cong g^{p,q} \sum_{j=1}^{D} \mu_{j}^{p,q} t^{\frac{1}{2}} \mu_{j}^{p,q} \cong g^{p,q} \sum_{j=1}^{D} \mu_{j}^{p,q} t^{\frac{1}{2}} \mu_{j}^{p,q}
\]

where we have used Theorem A and Lemma 1.

On the other hand, using again Lemma 1 and (2.4),

\[
\Phi_{\alpha}(d(\xi, \eta)) = g(\langle \xi, \eta \rangle) = \sum_{p,q,j} g^{p,q} H^{p,q}(\langle \xi, \eta \rangle) = \sum_{p,q,j} g^{p,q} f^{p,q}(\xi) f^{p,q}(\eta),
\]

and using Plancherel’s theorem and (2.17), we obtain that

\[
\int_{S_n} \Phi_{\alpha}(d(\xi, \eta)) d\mu(\eta) = \sum_{p,q,j} g^{p,q} \mu_{j}^{p,q} f_{j}^{p,q}(\xi),
\]

\[
J_{\alpha}(\mu) = \sum_{p,q,j} g^{p,q} \mu_{j}^{p,q} \cong \Lambda.
\]

This finishes the proof of Theorem 2. Q.E.D.

3. Proof of Theorem 1.

We need the following lemmas.

Lemma 3 [FPR]. Let \(\mu \) be a finite positive measure in \(\partial \Delta \), and let \(f \) be an inner function. Then, there exists a unique positive measure \(\nu \) in \(S_n \) such that \(P_{\mu} \circ f = P_{\nu} \) and

\[
\nu(\text{support } \mu) = \nu(S_n).
\]

Moreover, if \(f(0) = 0 \), then

\[
\frac{1}{\omega_{2n}} \nu(S_n) = \frac{1}{2\pi} \mu(\partial \Delta).
\]

A different normalization is useful; choosing \(\nu = (2\pi/\omega_{2n}) \nu \), one obtains

\[
P_{\nu} = \frac{2\pi}{\omega_{2n}} P_{\mu} \circ f \quad \text{and} \quad \nu(S_n) = \mu(\partial \Delta).
\]

The following is well known.
Lemma 4 (Subordination principle). Let $f : B_n \rightarrow \Delta$ be a holomorphic function such that $f(0) = 0$, and let $v : \Delta \rightarrow \mathbb{R}$ be a subharmonic function. Then, for all $0 \leq r < 1$,
\[\frac{1}{\omega_{2n}} \int_{S_n} v(f(r\xi)) \, d\xi \leq \frac{1}{2\pi} \int_0^{2\pi} v(re^{i\theta}) \, d\theta. \]

Lemma 5. Let μ be a complex measure on $\partial \Delta$, f an inner function with $f(0) = 0$, and v a complex measure on S_n such that
\[\mathcal{P}_v = (2\pi/\omega_{2n}) |\mathcal{P}_\mu \circ f|. \]
Then:

i) If $n \geq 1$ and $0 < \alpha < 2$ or $n = 1$ and $\alpha = 0$, there exists a constant C depending at most on n and α such that
\[J_{2n-2+\alpha}(v) \leq C J_0(\mu). \]

ii) If $\alpha = 0$, $n \geq 2$ and $m = \mu(\partial \Delta)$, there exists a constant C depending at most on n such that
\[J_{2n-2}(v) \leq C (|m|^2 + J_0(\mu)). \]

Proof. Since $v = |\mathcal{P}_\mu|^2$ is subharmonic (in the euclidean sense), we obtain by subordination (Lemma 4), that
\[(3.1) \quad \int_{S_n} \frac{1}{\omega_{2n}} \int_{S_n} \mathcal{P}_\mu(f(r\xi))^2 \, d\xi \leq \frac{2\pi}{\omega_{2n}} \int_0^{2\pi} |\mathcal{P}_\mu|^2 \, d\theta. \]
Using Theorem 2 twice, the inequality (3.1), and the fact that $n \geq 1$, we have that
\[J_{2n-2+\alpha}(v) \leq C \int_0^{1} \left\{ \int_{S_n} \mathcal{P}_\mu(f(r\xi))^2 \, d\xi \right\} \frac{dr}{(1 - r^2)^{n/2}} \]
\[\leq C \int_0^{1} \left\{ \int_0^{2\pi} \mathcal{P}_\mu(re^{i\theta})^2 \, d\theta \right\} \frac{dr}{(1 - r^2)^{n/2}} \]
\[\leq C \int_0^{1} \left\{ \int_0^{2\pi} \mathcal{P}_\mu(re^{i\theta})^2 \, d\theta \right\} \frac{dr}{(1 - r^2)^{n/2}} \]
\[\leq C J_0(\mu). \]
This finishes the proof of part i) in the case $n \geq 1$, $0 < \alpha < 2$. The other case follows from [FPR, Lemma 5], since $J_0(v) = I_0(v)/2$.

In order to prove ii), using that $m = \mu(\partial \Delta) = \nu(S_n)$, we obtain that
\[\int_{S_n} \mathcal{P}_\nu(r\xi) - \frac{m^2}{\omega_{2n}} \, d\xi + \frac{|m|^2}{\omega_{2n}} = \int_{S_n} \mathcal{P}_\nu(r\xi)^2 \, d\xi. \]
Integrating this equality and using Theorem 2, we have that
\[J_{2n-2}(v) \leq C \int_0^{1} \int_{S_n} \mathcal{P}_\nu(r\xi) - \frac{m^2}{\omega_{2n}} \, d\xi \, r^{n-2} \, dr + \frac{|m|^2}{(n-1)\omega_{2n}} \]
\[\leq C \int_0^{1} \int_{S_n} \mathcal{P}_\mu(re^{i\theta}) - \frac{m^2}{2\pi} \, d\theta \, r \, dr + \frac{|m|^2}{(n-1)\omega_{2n}} \]
\[\leq C (|m|^2 + J_0(\mu)) \leq C (|m|^2 + J_0(\mu)). \]
where we have used subordination (Lemma 4) with $v = |\mathcal{P}_\mu - m/(2\pi)|^2$ and Theorem B. Q.E.D.

Finally we can finish the proof of Theorem 1. We may assume that E is closed. In order to prove (1.1), let us denote by μ_e the α-equilibrium probability distribution of E and let ν be the probability measure in S_n such that $\mathcal{P}_\nu = (2\pi/\omega_{2n}) \mathcal{P}_{\mu_e} \circ f$. By Lemma 5,

\[(3.2) \quad J_{2n-2+\alpha}(\nu) \leq C J_{\alpha}(\mu_e) = C (\text{cap}_\alpha(E))^{-1}.
\]

But, from Lemma 3, $\nu(f^{-1}(E)) = 1$, and so

\[J_{2n-2+\alpha}(\nu) = \int_{f^{-1}(E) \times f^{-1}(E)} \Phi_{2n-2+\alpha}(d(\xi, \eta)) \, d\nu(\xi) \, d\nu(\eta).
\]

Now, let $\{K_j\}$ be an increasing sequence of compact subsets of $f^{-1}(E)$, such that $\nu(K_j) \nearrow 1$. Then, for each j,

\[J_{2n-2+\alpha}(\nu) = \int_{f^{-1}(E) \times f^{-1}(E)} \Phi_{2n-2+\alpha}(d(\xi, \eta)) \, d\nu(\xi) \, d\nu(\eta)
\]

\[\geq \nu(K_j)^2 \int_{K_j \times K_j} \Phi_{2n-2+\alpha}(d(\xi, \eta)) \, d\nu(\xi) \, d\nu(\eta)
\]

\[\geq \nu(K_j)^2 \left(\text{cap}_{2n-2+\alpha}(K_j) \right)^{-1}
\]

and consequently, if we let $j \to \infty$, we obtain that

\[(3.3) \quad J_{2n-2+\alpha}(\nu) \geq \left(\text{cap}_{2n-2+\alpha}(f^{-1}(E)) \right)^{-1}.
\]

Therefore, in the case $0 < \alpha < 2$, $n \geq 1$, (1.1) follows now from (3.2) and (3.3). The case $\alpha = 0$, $n = 1$, follows from [FPR, Theorem 1].

In order to prove (1.2) we proceed as follows. Let μ_e be the equilibrium distribution of E for the logarithmic capacity and let ν be the measure supported on S_n such that $\mathcal{P}_\nu = (2\pi/\omega_{2n}) \mathcal{P}_{\mu_e} \circ f$. Using Lemma 5,

\[J_{2n-2}(\nu) \leq C (1 + J_0(\mu_e)) = C \left(1 + \log \frac{1}{\text{cap}_0(E)} \right).
\]

Now, to finish the proof, one needs only to follow the same lines that in part i).

References.

13

Domingo Pestana
Departamento de Matemáticas
Universidad Carlos III de Madrid
Butarque, 15
Leganés, 28911 Madrid, SPAIN

e-mail: domingo@dulcinea.uc3m.es

José M. Rodríguez*
Departamento de Matemáticas
Universidad Carlos III de Madrid
Butarque, 15
Leganés, 28911 Madrid, SPAIN

e-mail: rodrig@dulcinea.uc3m.es

* Research partially supported by a grant from CYCIT (Ministerio de Educación y Ciencia, SPAIN)