THE ROLE OF FUNNELS AND PUNCTURES IN THE GROMOV HYPERBOLICITY OF Riemann Surfaces

Ana Portilla(1), José M. Rodríguez(1) and Eva Tourís(1)(2)

Departamento de Matemáticas
Universidad Carlos III de Madrid
Avenida de la Universidad, 30
28911 Leganés, Madrid, SPAIN

e-mails: apferrei@math.uc3m.es
jomaro@math.uc3m.es
etouris@math.uc3m.es

2000 AMS Subject Classification: 30F, 30F20, 30F45.

Key words: hyperbolicity, Riemann surface, funnel, puncture.

Running head: THE ROLE OF FUNNELS AND PUNCTURES IN THE HYPERBOLICITY

Abstract

We prove results on geodesic metric spaces which guarantee that some spaces are not hyperbolic in the Gromov sense. We use these theorems in order to study the hyperbolicity of Riemann surfaces. We obtain a criterion on the genus of a surface which implies the non-hyperbolicity. We also have a characterization of the hyperbolicity of a Riemann surface S^* obtained by deleting a closed set from one original surface S. In the particular case when the closed set is a union of continua and isolated points, the results clarify the role of punctures and funnels (and other more general ends) in the hyperbolicity of Riemann surfaces.

(1) Research partially supported by a grant from DGI (BFM 2003-04870), Spain.
(2) Research partially supported by a grant from DGI (BFM 2000-0022), Spain.
§1. Introduction

A good way to understand the important connections between graphs and Potential Theory on Riemannian manifolds (see e.g. [ARY], [CFPR], [FR2], [HS], [K1], [K2], [So]) is to study the Gromov hyperbolic spaces. This approach allows one to establish a general setting to work simultaneously with graphs and manifolds, in the context of metric spaces. Besides, the idea of Gromov hyperbolicity grasps the essence of negatively curved spaces, and has been successfully used in the theory of groups (see e.g. [GH] and the references therein).

Although there exist some interesting examples of hyperbolic spaces (see the examples after Definition 2.1), the literature gives no good guide about how to determine whether or not a space is hyperbolic. Recently, some interesting results of Balogh and Buckley [BB] about the hyperbolicity of Euclidean bounded domains with their quasihyperbolic metric have made significant progress in this direction (see also [BHK] and the references therein).

Originally, we were interested in studying when non-exceptional Riemann surfaces equipped with their Poincaré metric were Gromov hyperbolic. However, we have proved theorems on hyperbolicity for general metric spaces, which are interesting by themselves (see Section 3) and have important consequences for Riemann surfaces (see Section 5). Although one should expect Gromov hyperbolicity in non-exceptional Riemann surfaces due to its constant curvature -1, this turns out to be untrue in general, since topological obstacles can impede it: for instance, the two-dimensional jungle-gym (a \mathbb{Z}^2-covering of a torus with genus two) is not hyperbolic. Let us recall that in the case of modulated plane domains, quasihyperbolic and Poincaré metrics are equivalent.

The two last authors prove in [RT3] that there is no inclusion relationship between hyperbolic Riemann surfaces and the usual classes of Riemann surfaces, such as O_G, O_H^P, O_H^B, O_H^D, surfaces with hyperbolic isoperimetric inequality, or the complements of these classes (even in the case of plane domains). This fact is surprising and important, since it shows that the study of hyperbolic Riemann surfaces is more complicated and interesting that one might think at first sight. One can find results on hyperbolicity of Riemann surfaces in [RT1], [RT2], [RT3] and [PRT2].

Here we present the outline of the main results. We refer to later sections for the definitions and the precise statements of the theorems.

In Section 3 we obtain some lower bounds on the hyperbolicity constants of metric spaces, which will be useful in Section 5. In these theorems we study the role of punctures and funnels (and more general ends) in the hyperbolicity of Riemann surfaces.

The main aim in this paper is obtaining global results on hyperbolicity from local information. That was the idea that led us to identify some ends of a surface S^* with closed sets $\{E_n\}_n$ removed from an original surface S, in such a way that $S^* = S \setminus \cup_n E_n$.

Theorem 5.4 allows us, in many cases, to study the hyperbolicity of a Riemann surface in terms of the local hyperbolicity of its ends; this fact is a significant simplification in the study of the hyperbolicity. This theorem provides, in fact, a necessary and sufficient condition. Besides, we have determined which are the relevant parameters in the hyperbolicity constant of S^*. Thanks to the theorems on Gromov spaces appearing in Section 3, we have obtained this significant improvement of the results in [PRT2], since now the topological context is much more general.

Theorem 5.5 allows one, in many cases, to forget punctures and funnels in order to study the hyperbolicity of a Riemann surface; this fact is a significant simplification in the topology of the
surface, and therefore makes easier the problem. This theorem gives also a necessary and sufficient condition.

Theorem 5.3 is an important tool in the proof of theorems 5.4 and 5.5. It guarantees the hyperbolicity of surfaces of finite type, with hyperbolicity constants which only depend on the topology of the surface and some metric restrictions. It is important by itself, since it can be also viewed as a result on uniform hyperbolicity and stability of the hyperbolicity of Riemann surfaces.

We also prove two general criteria which guarantee that many surfaces are not hyperbolic (see theorems 5.1 and 5.2).

Notations. We denote by X or X_n geodesic metric spaces. By d_X and L_X we shall denote, respectively, the distance and the length in the metric of X.

We denote by S or S_i non-exceptional Riemann surfaces. We assume that the metric defined on these surfaces is the Poincaré metric, unless the contrary is specified.

By $\#A$ we mean the cardinality of the set A. Finally, we denote by c_i, k_i, positive constants which can assume different values in different theorems.

Acknowledgements. We would like to thank Professor José Luis Fernández for some useful discussions.

§2. Background in Gromov spaces

In our study of hyperbolic Gromov spaces we use the notations of [GH]. We give now the basic facts about these spaces. We refer to [GH] for more background and further results.

Definition 2.1. Let us fix a point w in a metric space (X, d). We define the Gromov product of $x, y \in X$ with respect to the point w as

$$(x|y)_w := \frac{1}{2} \left(d(x, w) + d(y, w) - d(x, y) \right) \geq 0.$$

We say that the metric space (X, d) is δ-hyperbolic ($\delta \geq 0$) if

$$(x|z)_w \geq \min \left\{ (x|y)_w, (y|z)_w \right\} - \delta,$$

for every $x, y, z, w \in X$. We say that X is hyperbolic (in the Gromov sense) if the value of δ is not important.

It is convenient to remark that this definition of hyperbolicity is not universally accepted, since sometimes the word hyperbolic refers to negative curvature or to the existence of Green’s function. However, in this paper we only use the word hyperbolic in the sense of Definition 2.1.

Examples:

(1) Every bounded metric space X is $(\text{diam } X)$-hyperbolic.

(2) Every complete simply connected Riemannian manifold with sectional curvature which is bounded from above by $-k$, with $k > 0$, is hyperbolic.

(3) Every tree with edges of arbitrary length is 0-hyperbolic.

We refer the reader to [BHK], [GH] and [CDP] for further examples.
Definition 2.2. If $\gamma : [a, b] \to X$ is a continuous curve in a metric space (X, d), we can define the length of γ as

$$L(\gamma) := \sup \left\{ \sum_{i=1}^{n} d(\gamma(t_{i-1}), \gamma(t_i)) : a = t_0 < t_1 < \cdots < t_n = b \right\}. $$

We say that γ is a geodesic if it is an isometry, i.e. $L(\gamma|_{[t, s]}) = d(\gamma(t), \gamma(s)) = |t - s|$ for every $s, t \in [a, b]$. We say that X is a geodesic metric space if for every $x, y \in X$ there exists a geodesic joining x and y; we denote by $[x, y]$ any of such geodesics (since we do not require uniqueness of geodesics, this notation is ambiguous, but it is convenient).

Definition 2.3. If X is a geodesic metric space and J is a polygon whose sides are J_1, J_2, \ldots, J_n, we say that J is δ-thin if for every $x \in J_i$ we have that $d(x, \cup_{j \neq i} J_j) \leq \delta$. If $x_1, x_2, x_3 \in X$, a geodesic triangle $T = \{x_1, x_2, x_3\}$ is the union of three geodesics $[x_1, x_2]$, $[x_2, x_3]$ and $[x_3, x_1]$. The space X is δ-thin (or satisfies the Rips condition with constant δ) if every geodesic triangle in X is δ-thin.

A basic result is that hyperbolicity is equivalent to the Rips condition:

Theorem A. ([GH, p. 41]) Let us consider a geodesic metric space X.

(1) If X is δ-hyperbolic, then it is 4δ-thin.

(2) If X is δ-thin, then it is 4δ-hyperbolic.

We present now the class of maps which play the main role in the theory.

Definition 2.4. A function between two metric spaces $f : X \to Y$ is a quasi-isometry if there are constants $a \geq 1$, $b \geq 0$ with

$$\frac{1}{a} d_X(x_1, x_2) - b \leq d_Y(f(x_1), f(x_2)) \leq a d_X(x_1, x_2) + b, \quad \text{for every } x_1, x_2 \in X.$$

Such a function is called an (a, b)-quasi-isometry. An (a, b)-quasigeodesic in X is an (a, b)-quasi-isometry between an interval of \mathbb{R} and X.

Notice that a quasi-isometry can be discontinuous.

Quasi-isometries are important since they are maps which preserve hyperbolicity:

Theorem B. ([GH, p. 88]) Let us consider an (a, b)-quasi-isometry between two geodesic metric spaces $f : X \to Y$. If Y is δ-hyperbolic, then X is δ'-hyperbolic, where δ' is a constant which only depends on δ, a and b.

Definition 2.5. Let us consider $H > 0$, a metric space X, and subsets $Y, Z \subseteq X$. The set $V_H(Y) := \{x \in X : d(x, Y) \leq H\}$ is called the H-neighborhood of Y in X. The Hausdorff distance of Y to Z is defined by $H(Y, Z) := \inf\{H > 0 : Y \subseteq V_H(Z), \ Z \subseteq V_H(Y)\}$.

The following is a beautiful and useful result:

Theorem C. ([GH, p. 87]) For each $\delta, b \geq 0$ and $a \geq 1$, there exists a constant $H = H(\delta, a, b)$ with the following property:

Let us consider a δ-hyperbolic geodesic metric space X and an (a, b)-quasigeodesic g joining x and y. If γ is a geodesic joining x and y, then $H(g, \gamma) \leq H$.

This property is known as geodesic stability. Mario Bonk has proved that, in fact, geodesic stability is equivalent to hyperbolicity [Bo].
Along this paper we will work with topological subspaces of a geodesic metric space X. There is a natural way to define a distance in these spaces:

Definition 2.6. If X_0 is a path-connected subset of a metric space (X, d), then we associate to it the *intrinsic distance*

$$d_{X_0}(x, y) := d_X|_{X_0}(x, y) := \inf \left\{ L(\gamma) : \gamma \subset X_0 \text{ is a continuous curve joining } x \text{ and } y \right\} \geq d_X(x, y).$$

If X_0 is not path-connected, we also use this definition if x and y belong to the same path-connected component of X_0; if x and y belong to distinct path-connected components of X_0, we define $d_{X_0}(x, y) := \infty$.

Definition 2.7. A polygon whose sides are (a, b)-quasigeodesics is said to be (a, b)-*quasigeodesic.*

§3. Results in metric spaces

We want to remark that almost every constant appearing in the results of this paper depends just on a small number of parameters.

The following result will be useful in order to check that a geodesic metric space is not hyperbolic (see theorems 5.1 and 5.2).

Theorem 3.1. Let us consider a geodesic metric space X, and $X_1, X_2 \subset X$ path-connected closed subspaces such that $X_1 \cup X_2 = X$, $X_1 \cap X_2 = \cup_{i \in A} \eta_i$, with $\# A \geq 2$, η_i closed sets and $d_{X_2}(\eta_i, \eta_j) \geq c$ for every $i, j \in A, i \neq j$. Let us assume also that each curve with finite length in X intersects at most finitely many η_i’s. Then, for each $\varepsilon > 0$ there exists a $(1, \varepsilon)$-quasigeodesic triangle $T = \{A, B, C\}$ in X and $x \in A$ with $d_X(x, B \cup C) \geq c/4 - \varepsilon$.

Remarks.
1. Notice that the condition $d_{X_2}(\eta_i, \eta_j) \geq c$ is much less restrictive than $d_X(\eta_i, \eta_j) \geq c$, since in the applications we usually know $d_{X_2}(\eta_i, \eta_j)$, but we do not have any lower bound of $d_X(\eta_i, \eta_j)$ at all (see theorems 5.2, 5.4 and 5.5, and Proposition 5.1).
2. We only require that X_1 and X_2 are closed sets in order to guarantee that any curve joining X_1 and X_2 must pass through $X_1 \cap X_2$.

Proof. Let us consider a graph $G := (V, E)$ with vertices $V = \{v_1, v_2\} \cup \{v^i\}_{i \in A}$ and edges $E = \{[v_1, v^i], [v_2, v^i]\}_{i \in A}$, which is going to model the connections between X_1 and X_2: X_1, X_2 are identified with the vertices v_1, v_2, respectively, and each set η_i is identified with v^i, for $i \in A$.

First of all, we define a map F, such that $F(\gamma)$ is a closed curve in G, for each closed curve γ with finite length in X. We define F in the following way:

1. If γ is a non-closed curve starting and finishing in η_i, with $\gamma \cap \left(\cup_{j \in A \setminus \{i\}} \eta_j \right) = \emptyset$, then $F(\gamma) := v^i$.
2. If γ is a non-closed curve starting in η_i and finishing in η_j $\left(i \neq j\right)$, γ only intersects $\eta_i \cup \eta_j$ in its endpoints, and $\gamma \cap \left(\cup_{k \in A \setminus \{i, j\}} \eta_k \right) = \emptyset$, it is clear that this curve is contained in some $X_n \ (n = 1, 2)$, and then we define $F(\gamma) := [v_n, v^i] \cup [v_n, v^j]$.

If γ is a closed curve in $X_n \setminus \cup_{i \in A} \eta_i$ $\left(n = 1, 2\right)$, we define $F(\gamma) := v_n$. If γ intersects $\cup_{i \in A} \eta_i$, then it can be decomposed in a unique way as a finite union of subcurves in (1) and/or (2); then we define...
Let $F(\gamma)$ as the union of the image by F of these subcurves (with the appropriate orientation in order to get that $F(\gamma)$ is a continuous closed curve).

Now, we are going to define a class of curves Γ in X: we say that a closed curve $\gamma \in \Gamma$ if and only if $F(\gamma)$ is non-simply connected in the graph G.

Notice that any curve $\gamma \in \Gamma$ satisfies $L(\gamma) \geq c$, since γ contains a subcurve joining some η_i and η_j ($i \neq j$) in X_2: if γ does not contain such a subcurve, then $F(\gamma)$ is contained in $\cup_{i \in a}[v_i, v^i]$, which is a simply connected subset of G.

For each $\varepsilon > 0$, let us choose a curve $\gamma_\varepsilon \in \Gamma$ with $L(\gamma_\varepsilon) < \inf_{\gamma \in \Gamma} L(\gamma) + \varepsilon$. We want to prove that any subcurve γ_0 of γ_ε with $L(\gamma_0) \leq L(\gamma_\varepsilon)/2$ is a $(1, \varepsilon)$-quasigeodesic.

In order to do this, we consider two points $p, q \in \gamma_\varepsilon$ and a geodesic g in X joining them. Since γ_ε is a closed curve, we can split it into two different curves γ', γ'' joining p and q, with $\gamma' \cup \gamma'' = \gamma_\varepsilon$. We prove now that $L(g) > \min\{L(\gamma'), L(\gamma'')\} - \varepsilon$. Seeking for a contradiction, suppose that $L(g) \leq \min\{L(\gamma'), L(\gamma'')\} - \varepsilon$. Then $L(g \cup \gamma'), L(g \cup \gamma'') \leq L(\gamma_\varepsilon) - \varepsilon < \inf_{\gamma \in \Gamma} L(\gamma)$.

Claim. We claim now that at least one of the closed curves $g \cup \gamma', g \cup \gamma''$ belongs to Γ.

Assuming this claim to be true for the moment, we obtain the required contradiction, since we have a curve of Γ with length less than $\inf_{\gamma \in \Gamma} L(\gamma)$.

Let us consider the arc-length parametrization $\gamma_0 : [0, t] \rightarrow X$ of a subcurve of γ_ε with $l = L(\gamma_0) \leq L(\gamma_\varepsilon)/2$. By definition of arc-length parametrization we have that $d_X(\gamma_0(t), \gamma_0(s)) = \left| t - s \right|$. Since $l \leq L(\gamma_\varepsilon)/2$, we have proved that if g is a geodesic in X joining $\gamma_0(s)$ and $\gamma_0(t)$, then $d_X(\gamma_0(t), \gamma_0(s)) = L(g) > L(\gamma_0([s, t])) = \left| t - s \right| - \varepsilon$. These inequalities guarantee that γ_0 is a $(1, \varepsilon)$-quasigeodesic.

Let us choose now two points $p_0, q_0 \in \gamma_\varepsilon$ such that we can split γ_ε into two different curves γ', γ'' joining p_0 and q_0, with $\gamma' \cup \gamma'' = \gamma_\varepsilon$ and $L(\gamma') = L(\gamma'') = L(\gamma_\varepsilon)/2$. Consequently, γ' and γ'' are $(1, \varepsilon)$-quasigeodesics in X, and $\{\gamma', \gamma''\}$ is a $(1, \varepsilon)$-quasigeodesic triangle in X (it is a triangle since the definition of triangle allows two vertices to be equal).

We consider the point $x \in \gamma'$ which splits γ' into two curves of equal length $L(\gamma_\varepsilon)/4$. We have that $d_X(x, \gamma'') \geq L(\gamma_\varepsilon)/4 - \varepsilon \geq c/4 - \varepsilon$.

Let us prove now the claim. Seeking for a contradiction, if both of them are not in Γ, then $F(g \cup \gamma')$, $F(g \cup \gamma'')$ are trivial in the graph G; therefore $F(g \cup \gamma') \cup F(g \cup \gamma'')$ is also trivial. We can construct a homotopy in X, which shows that $[g \cup \gamma'] * [g \cup \gamma''] = [\gamma' \cup \gamma''] = [\gamma_\varepsilon]$ (we can take as homotopy a deformation of the two curves with graph g in a single point). In a similar way, we can construct a homotopy in G, which shows that $[F(g \cup \gamma')] * [F(g \cup \gamma'')] = [F(\gamma' \cup \gamma'')] = [F(\gamma_\varepsilon)]$ (although that the image by F of the homotopy in X is not the homotopy in G). This is a contradiction because $F(\gamma_\varepsilon)$ is trivial in G but $\gamma_\varepsilon \in \Gamma$. □

In order to apply Theorem 3.1, we need the following elementary result (see e.g. [PRT1, Lemma 2.16] for a proof):

Lemma A. For each $\delta, b \geq 0$ and $a \geq 1$, there exists a constant $K = K(\delta, a, b)$ with the following property:

If X is a δ-hyperbolic geodesic metric space and $T \subseteq X$ is an (a, b)-quasigeodesic triangle, then T is K-thin. Furthermore, $K = 4\delta + 2H(\delta, a, b)$, where H is the constant in Theorem C.

Theorem 3.1 and Lemma A give directly the following result.
Theorem 3.2. Let us consider a geodesic metric space X, and $X_1^n, X_2^n \subset X$ path-connected closed subspaces such that $X_1^n \cup X_2^n = X$, $X_1^n \cap X_2^n = \bigcup_{i \in A^n} \eta_i^n$, with $\#A^n \geq 2$, η_i^n closed sets and $d_{X_2}(\eta_i^n, \eta_j^n) \geq c_n$ for every $i, j \in A^n$, $i \neq j$. Let us assume also that for each fixed n, each curve with finite length in X intersects at most finitely many η_i^n’s. If $\limsup_{n \to \infty} c_n = \infty$, then X is not hyperbolic.

The following elementary result is a direct consequence of Theorem 3.2.

Corollary 3.1. Let us consider a graph G which is a geodesic metric space, with a sequence of edges $\{e_n\}_n$ such that the graph $G \setminus e_n$ is connected for every n, and $\lim_{n \to \infty} L(e_n) = \infty$. Then G is not hyperbolic.

In order to prove Proposition 5.1 and theorems 5.4 and 5.5, we need a result similar to Theorem 3.1, but decomposing the space X in more than two subspaces and replacing condition “$d_{X_2}(\eta_i, \eta_j) \geq c$ for every $i, j \in A$, $i \neq j$”, by “$d_{X_2}(\eta_i, \eta_j) \geq c$ for some $i, j \in A$”; however, we must pay with some additional requirements. Next, let us start with an elementary fact.

Lemma 3.1. Let X be a geodesic metric space, γ a geodesic in X and S a subset of X. Let us assume that there exists a geodesic γ joining γ with S, such that $L(\gamma) = d(\gamma, S)$, whose endpoints are $x_1 \in \gamma$ and $x_2 \in S$. Let us choose two arbitrary points, $x_3 \in S$, $x_4 \in \gamma$, and denote by $A := d(x_1, x_4)$, $B := d(x_2, x_3)$ and $C := d(x_3, x_4)$. Then, $A \leq B + 2C$.

Proof. We define $D := d(x_1, x_2) = d(\gamma, S)$. Notice that the condition $D = d(\gamma, S)$ implies $D \leq C$. By the triangle inequality it is obvious that $A \leq B + C + D \leq B + 2C$. \qed

We are going to introduce now the main result of this section. It will be essential in the proofs of Proposition 5.1 and theorems 5.4 and 5.5.

Theorem 3.3. Let X be a geodesic metric space, and X_1, X_2, X_3 closed subsets of X, with X_1, X_2 path-connected, $X_1 \cup X_2 \cup X_3 = X$, $X_1 \cap X_2 = \bigcup_{i=1}^{r} \eta_i$ ($r \geq 2$), $X_2 \cap X_3 = \bigcup_{i=r+1}^{k} \eta_i$, and $X_1 \cap X_3 = \emptyset$, where η_i’s are closed sets. Let us assume that there exist two positive constants, c_1, c_2, such that $diam_{X_1}(\eta_i) \leq c_1$ for every $1 \leq i \leq r$, $diam_{X_2}(\eta_i) \leq c_1$ for every $1 \leq i \leq k$, and $d_{X_2}(\eta_i, \eta_j) \geq c_2$ for some $1 \leq i, j \leq r$. If X is δ-thin, then $c_2 \leq 8(k-1)(c_1/2 + (2k + 2r - 6)\delta + 2H(4\delta, 2, c_1/2))$, where H is the constant in Theorem C.

Remarks.
1. The case $X_3 = \emptyset$ is allowed.
2. The hypothesis $X_1 \cap X_3 = \emptyset$ is not restrictive at all, since if some connected components of X_3 intersect X_1, we can consider these components as a part of X_1.
3. Since we do not require X_3 to be connected, the conclusion of Theorem 3.3 also holds if we consider $X = X_1 \cup X_2 \cup \cdots \cup X_n$, with $X_2 \cap \{X_3 \cup \cdots \cup X_n\} = \bigcup_{i=r+1}^{k} \eta_i$.

Proof. Without loss of generality, we can assume that X_1 and X_2 are geodesic spaces, since, if this is not so, whenever we need a geodesic joining $x, y \in X_i$, for any $\varepsilon > 0$ we can take a curve γ_ε joining them with $L(\gamma_\varepsilon) < d_{X_i}(x, y) + \varepsilon$ (in a similar way as in the proof of Theorem 3.1). As only a finite number of geodesics are employed in the proof, it is still valid bearing in mind ε when necessary; afterwards, it is sufficient to make $\varepsilon \to 0$, since the dependence on ε of the constants involved is
continuous. Analogously, a geodesic of minimum length in X_2 can be assumed to exist between η_i and η_j, for i, j with $d_{X_2}(\eta_i, \eta_j) \geq c_2$.

Let us assume that there exists a $(2, c_1/2)$-quasigeodesic polygon, with at most $2k + 2r - 4$ sides, that is δ_0-thin with δ_0 the sharpest constant and $\delta_0 \geq \frac{c_2^2}{8(k+1)}$. Since the space X is δ-thin, it is 4δ-hyperbolic by Theorem A; it can be easily deduced that a $(2, c_1/2)$-quasigeodesic polygon with at most $2k + 2r - 4$ sides, is δ_1-thin, with $\delta_1 = (2k + 2r - 6)\delta + 2H(4\delta, 2, c_1/2)$, where H is the constant in Theorem C. Therefore $\delta_1 \geq \delta_0 \geq \frac{c_2^2}{8(k+1)} - \frac{c_2}{4}$. Consequently,

$$c_2 \leq 8(k - 1)(c_1/2 + (2k + 2r - 6)\delta + 2H(4\delta, 2, c_1/2)).$$

To continue, let us construct such a quasigeodesic polygon: Without loss of generality, we can assume that η_1, η_r are the sets such that $d_{X_2}(\eta_1, \eta_r) \geq d_{X_2}(\eta_i, \eta_j)$, for every $1 \leq i, j \leq r$.

We denote by γ_2 a geodesic in X_2 joining η_1 with η_r, such that $L(\gamma_2) = d_{X_2}(\eta_1, \eta_r) \geq c_2$; let us assume that γ_2 starts in $a \in \eta_1$ and finishes in $b \in \eta_r$. We denote by γ_1 a geodesic in X_1 joining a and b. Therefore, $\gamma := \gamma_1 \cup \gamma_2$ is a closed curve in X.

Our goal is to construct a quasigeodesic polygon contained in γ, where a and b are two of its vertices. We will choose the other vertices in two consecutive steps.

First step. We denote by σ_1^i a geodesic of minimum length in X_1 between η_i and γ_1, with $2 \leq i \leq r - 1$ (such a geodesic there exists since X_1 is compact, and X_1 is a geodesic space), and σ_2^r a geodesic of minimum length in X_2 between η_r and γ_2, with $2 \leq i \leq k$ and $i \neq r$. We call $x_i^1 := \sigma_1^i \cap \eta_i$ and $y_i^1 := \sigma_1^i \cap \gamma_1$ for every $2 \leq i \leq r - 1$ if $j = 1$, and for every $2 \leq i \leq k$, $i \neq r$ if $j = 2$.

We take as a vertex the point y_i^1 for every $2 \leq i \leq r - 1$ if $j = 1$, and for every $2 \leq i \leq k$, $i \neq r$ if $j = 2$ (we can define $y_1^1 := a$ and $y_r^1 := \sigma_1^i := b$).

Second step. Between every two consecutive vertices described in the previous step, we consider as a new vertex its middle point in γ.

Now, we are going to prove that this polygon, with at most $2k + 2r - 4$ sides is $(2, c_1/2)$-quasigeodesic:

Let α, β be points in the same side L_1 of the polygon. Without loss of generality, we can assume that $L_1 \subset X_2$, since the other case is similar. Notice that, by the construction of the polygon, there is an adjacent side, $L_2 \subset X_2$, such that $L(L_2) = L(L_1) := t$ and $L_1 \cap L_2$ is one of the vertices chosen on the second step. Let g be a geodesic in X, joining α and β such that $g(0) = \alpha$, $g(T) = \beta$.

It is clear that $T := d_X(\alpha, \beta) \leq d_{X_2}(\alpha, \beta)$.

Let us prove now the other inequality. Let us suppose that g intersects $\eta_1, \eta_2, \ldots, \eta_r$, in this order. Then we can define $t_0 := \max\{t \in [0, T] : g(t) \in \eta_i\}$, since η_i is a closed set.

Without loss of generality, we can assume that $d_{X_2}(\beta, L_2) = \min\{d_{X_2}(\alpha, L_2), d_{X_2}(\beta, L_2)\}$; we define $\beta' := g(t_0) \in \eta_i$. It is clear that $d_{X_2}(\alpha, \beta) \leq d_{X_2}(\beta, y_i^1)$, since it is not possible to have $y_i^1 = L_1 \cap L_2$ (recall that $L_1 \cap L_2$ is one of the vertices chosen in the second step).

We construct the quadrilateral in X_2 with vertices β, y_i^1, x_i^1 and β', and sides $g|_{[\beta, \beta']}, y_i^1|_{[\beta, y_i^1]}, x_i^1|_{[\beta, x_i^1]}$ (a geodesic in X_2). Applying Lemma 3.1, where $A := d_{X_2}(\beta, y_i^1), B := d_{X_2}(\beta', x_i^1)$, and $C := d_{X_2}(\beta, \beta') = d_X(\alpha, \beta) \leq d_X(\alpha, \beta)$, we have

$$d_{X_2}(\alpha, \beta) \leq d_{X_2}(\beta, y_i^1) = A \leq B + 2C \leq 2d_{X_2}(\alpha, \beta) + c_1.$$
and we have proved that our polygon is, actually, \((2, c_1/2)\)-quasi-geodesic. Let us see now that it is \(\delta_0\)-thin, with \(\delta_0\) the sharpest constant and \(\delta_0 \geq \frac{c_2}{4(k-1)} = \frac{1}{2} \).

As there are at most \(2k - 2\) sides of the polygon in \(X_2\), there exist at least two adjacent sides in \(X_2\) whose length is greater or equal than \(c_2/(2k - 2)\). Let us choose one of them, and name its vertices \(v_1\) and \(v_2\). Let \(p\) be the middle point between them in \(\gamma_2\), and let \(S\) be the union of the rest of sides of the polygon. Our current aim is to estimate \(d_X(p, S)\).

Let \(g\) be a geodesic in \(X\) such that \(L(g) = d_X(p, S)\). There are two possibilities:

1. If \(g\) is contained in \(X_2\), then \(d_X(p, S) = d_{X_2}(p, S) = d_{X_2}(p, \{v_1, v_2\}) \geq \frac{c_2}{4(k-1)}\).

2. If \(g\) is not contained in \(X_2\), the first time \(g\) gets out of \(X_2\) is through some \(\eta_i, 1 \leq i \leq k\), at a certain point \(q\). Notice that it is not possible that \(i \in \{1, r\}\), since \(\gamma_2\) is a minimizing geodesic between \(\eta_1\) and \(\eta_r\). Let us define a quadrilateral with vertices \(p, q, x_i^2, y_i^2\) (where \(x_i^2\) and \(y_i^2\) are the endpoints of \(\sigma_i^2\), defined at the beginning of the proof). The sides of this polygon are \(\gamma_2[p,q], \sigma_i^2[q,p], [x_i^2,q]\) and \([x_i^2,q]\) (a geodesic in \(X_2\)). Applying Lemma 3.1, where \(A := d_{X_2}(p, y_i^2), B := d_{X_2}(x_i^2, q)\) and \(C := d_{X_2}(p, q) = d_X(p, q) \leq d_X(p, S)\), it can be deduced that

\[
\frac{c_2}{4(k-1)} \leq d_{X_2}(p, \{v_1, v_2\}) \leq d_{X_2}(p, y_i^2) = A \leq B + 2C \leq 2d_X(p, S) + c_1.
\]

Consequently, \(\delta_0 \geq d_X(p, S) \geq \frac{c_2}{2(k-1)} - \frac{1}{2} \).

Theorem 3.3 and Lemma A imply the following result.

Theorem 3.4. Let \(X\) be a geodesic metric space, and \(X_1^p, X_2^p, X_3^p\) closed subsets of \(X\), with \(X_1^p, X_2^p, X_3^p\) path-connected, \(X_1^p \cup X_2^p \cup X_3^p = X\), \(X_1^p \cap X_2^p = \bigcup_{i=1}^{r_n} \eta_i^p\) (\(r_n \geq 2\)), \(X_2^p \cap X_3^p = \bigcup_{i=r_n+1}^{k_n} \eta_i^p\), and \(X_1^p \cap X_3^p = \emptyset\), where \(\eta_i^p\)'s are closed sets. Let us assume that there exist positive constants, \(c_1, c_2\), such that \(\text{diam}(X_1^p(\eta_i^p)) \leq c_1\) for every \(1 \leq i \leq r_n\), \(\text{diam}(X_2^p(\eta_i^p)) \leq c_1\) for every \(1 \leq i \leq k_n\), and \(d_{X_2^p}(\eta_i^p, \eta_j^p) \geq c_2^i\) for some \(1 \leq i, j \leq r_n\). If \(k_n \leq k\) and \(\limsup_{n \to \infty} c_2^i = \infty\), then \(X\) is not hyperbolic.

We finish this section with one theorem which will be very useful in the proof of the main results of this paper. In order to state them, we need a definition.

Definition 3.1. We say that a geodesic metric space \(X\) has a decomposition, if there exists a family of geodesic metric spaces \(\{X_n\}_{n \in \Lambda}\) with \(X = \bigcup_{n \in \Lambda} X_n\) and \(X_n \cap X_m = \sigma_{nm}\), where for each \(n \in \Lambda\), \(\sigma_{nm}\) are pairwise disjoint closed subsets of \(X_n\) (\(\sigma_{nm} = \emptyset\) is allowed); furthermore any geodesic in \(X\) with finite length meets at most a finite number of \(\sigma_{nm}\)'s.

We say that \(X_n\), with \(n \in \Lambda\), is a \((k_1, k_2, k_3)\)-tree-piece if it satisfies the following properties:

(a) If \(\sigma_{nm} \neq \emptyset\), then \(X \setminus \sigma_{nm}\) is not connected and \(a, b\) are in different connected components of \(X \setminus \sigma_{nm}\) for any \(a \in X_n \setminus \sigma_{nm}, b \in X_m \setminus \sigma_{nm}\).

(b) \(\text{diam}_{X_n}(\sigma_{nm}) \leq k_1\) for every \(m \neq n\), and there exists \(A_n \subseteq \Lambda\), such that \(\text{diam}_{X_n}(\sigma_{nm}) \leq k_2 d_{X_n}(\sigma_{nm}, \sigma_{nk})\) if \(m \neq k\) and \(m, k \in A_n\), and \(\sum_{m \in A_n} \text{diam}_{X_n}(\sigma_{nm}) \leq k_3\).

We say that a geodesic metric space \(X\) has a \((k_1, k_2, k_3)\)-tree-decomposition if it has a decomposition such that every \(X_n\), with \(n \in \Lambda\), is a \((k_1, k_2, k_3)\)-tree-piece.

We wish to emphasize that condition \(\text{diam}_{X_n}(\sigma_{nm}) \leq k_1\) is not very restrictive: if the space is “wide” at every point (in the sense of long injectivity radius, as in the case of simply connected spaces) or “narrow” at every point (as in the case of trees), it is easier to study its hyperbolicity; if we can find narrow parts (as \(\sigma_{nm}\)) and wide parts, the problem is more difficult and interesting.
Remarks.

1. Obviously, condition (b) is required only for \(\sigma_{nm}, \sigma_{nk} \neq \emptyset \).

2. The sets \(\Lambda \) and \(A_n \) do not need to be countable.

3. The hypothesis \(\text{diam}_X(\sigma_{nm}) \leq k_2 d_X(\sigma_{nm}, \sigma_{nk}) \) holds if we have \(d_X(\sigma_{nm}, \sigma_{nk}) \geq k'_2 \), since \(\text{diam}_X(\sigma_{nm}) \leq k_1 \).

4. Condition (a) for every \(n \in \Lambda \) guarantees that the graph \(R = (V, E) \) constructed in the following way is a tree: \(V = \bigcup_{n \in \Lambda} \{v_n\} \) and \([v_n, v_m] \in E\) if and only if \(\sigma_{nm} \neq \emptyset \).

5. If \(X \) is a Riemann surface, \(\{X_n\}_{n \in \Lambda} \) are bordered Riemann surfaces and \(\sigma_{nm} \subset \partial X_n \cap \partial X_m \), then the condition “\(a, b \) are in different components of \(X \setminus \sigma_{nm} \) for any \(a \in X_n \setminus \sigma_{nm}, b \in X_m \setminus \sigma_{nm} \)” in (a), is a consequence of “\(X \setminus \sigma_{nm} \) is not connected”.

The following result can be applied to the study of the hyperbolicity of Riemann surfaces (see the proof of theorems 5.3 and 5.4). In [PRT1] explicit expressions for the constants involved are supplied.

Theorem D. ([PRT1, Theorem 2.9]) Let us consider a \((k_1, k_2, k_3)\)-tree-decomposition \(\{X_n\}_{n \in \Lambda} \) of a geodesic metric space \(X \). Then \(X \) is \(\delta \)-hyperbolic if and only if there exists a constant \(k_4 \) such that \(X_n \) is \(k_4 \)-hyperbolic for every \(n \in \Lambda \). Furthermore, if \(X \) is \(\delta \)-hyperbolic, then \(k_4 \) only depends on \(\delta, k_1, k_2 \) and \(k_3 \); if there exists \(k_4 \), then \(\delta \) only depends on \(k_1, k_2, k_3 \) and \(k_4 \).

§4. BACKGROUND IN RIEMANN SURFACES

Both in this section and in the next one we always work with the Poincaré metric; consequently, curvature is always \(-1\). In fact, many concepts appearing here (as punctures or funnels) only make sense with the Poincaré metric.

Below we collect some definitions concerning Riemann surfaces which will be referred to afterwards.

An open non-exceptional Riemann surface \(S \) (or a non-exceptional Riemann surface without boundary) is a Riemann surface whose universal covering space is the unit disk \(D = \{z \in \mathbb{C} : |z| < 1\} \), endowed with its Poincaré metric, i.e. the metric obtained by projecting the Poincaré metric of the unit disk \(ds = 2|dz|/(1-|z|^2) \) or, equivalently, the upper half plane \(U = \{z \in \mathbb{C} : \text{Im} z > 0\} \), with the metric \(ds = |dz|/\text{Im} z \). Notice that, with this definition, every compact non-exceptional Riemann surface without boundary is open. With this metric, \(S \) is a geodesically complete Riemannian manifold with constant curvature \(-1\), and therefore \(S \) is a geodesic metric space. The only Riemann surfaces which are left out are the sphere, the plane, the punctured plane and the tori. It is easy to study the hyperbolicity of these particular cases.

Let \(S \) be an open non-exceptional Riemann surface with a puncture \(q \) (if \(S \subset \mathbb{C} \), every isolated point in \(\partial S \) is a puncture). A collar in \(S \) about \(q \) is a doubly connected domain in \(S \) “bounded” both by \(q \) and a Jordan curve (called the boundary curve of the collar) orthogonal to the pencil of geodesics emanating from \(q \).

We have used the word *geodesic* in the sense of Definition 2.2, that is to say, as a global geodesic or a minimizing geodesic; however, we need now to deal with a special type of local geodesics: simple closed geodesics, which obviously can not be minimizing geodesics. We will continue using the word geodesic with the meaning of Definition 2.2, unless we are dealing with closed geodesics.
A collar in S about a simple closed geodesic γ is a doubly connected domain in S “bounded” by two Jordan curves (called the boundary curves of the collar) orthogonal to the pencil of geodesics emanating from γ; such collar is equal to $\{p \in S : d_S(p, \gamma) < d\}$, for some positive constant d. The constant d is called the width of the collar. The Collar Lemma [R] says that there exists a collar of γ of width d, for every $0 < d \leq d_0$, where $\cosh d_0 = \coth(L_S(\gamma)/2)$ (see also [Bu, Chapter 4]).

We say that S is a bordered non-exceptional Riemann surface (or a non-exceptional Riemann surface with boundary) if it can be obtained by deleting an open set V from an open non-exceptional Riemann surface \overline{R}, such that:

1. S is connected and $d_S := d_{\overline{R}}|_S$ (recall Definition 2.6),
2. any ball in \overline{R} intersects at most a finite number of connected components of V,
3. the boundary of S is locally Lipschitz.

Any such surface S is a bordered orientable Riemannian manifold of dimension 2 and its Riemannian metric has constant negative curvature -1. It is not difficult to see that S is a geodesic metric space.

A funnel is a bordered non-exceptional Riemann surface which is topologically a cylinder and whose boundary is a simple closed geodesic. Given a positive number a, there is a unique (up to conformal mapping) funnel such that its boundary curve has length a. Every funnel is conformally equivalent, for some $\beta > 1$, to the subset $\{z \in \mathbb{C} : 1 \leq |z| < \beta\}$ of the annulus $\{z \in \mathbb{C} : 1/\beta < |z| < \beta\}$. In fact, we can obtain any annulus by pasting two isometric funnels.

Every doubly connected end of an open non-exceptional Riemann surface is a puncture (if there are homotopically non-trivial curves with arbitrary small length) or a funnel (if this is not so).

A Y-piece is a bordered non-exceptional Riemann surface which is conformally equivalent to a sphere without three open disks and whose boundary curves are simple closed geodesics. Given three positive numbers a, b, c, there is a unique (up to conformal mapping) Y-piece such that their boundary curves have lengths a, b, c (see e.g. [Bu, p. 109]). They are a standard tool for constructing Riemann surfaces. A clear description of these Y-pieces and their use is given in [C, Chapter X.3] and [Bu, Chapter 3].

A generalized Y-piece is a non-exceptional Riemann surface (with or without boundary) which is conformally equivalent to a sphere without n open disks and m points, with integers $n, m \geq 0$ such that $n + m = 3$, the n boundary curves are simple closed geodesics and the m deleted points are punctures. Notice that a generalized Y-piece is topologically the union of a Y-piece and m cylinders, with $0 \leq m \leq 3$.

If we delete an open set U from a non-exceptional Riemann surface S, we consider $S \setminus U$ as a bordered non-exceptional Riemann surface, with $d_{S\setminus U} = d_S|_{S\setminus U}$.

If we delete a closed set E from an open non-exceptional Riemann surface S, we consider $S \setminus E$ also as an open non-exceptional Riemann surface, with its (own) Poincaré metric; consequently, $d_{S \setminus E} \neq d_S|_{S \setminus E}$, since $(S \setminus E, d_{S \setminus E})$ is geodesically complete.

§5. Results in Riemann surfaces

Intuition would say that negative curvature in Riemann surfaces must imply hyperbolicity; in fact this is what happens when there are no topological “obstacles” (as in the case of the Poincaré disk \mathbb{D}).
or if there are a finite number of them (see theorems E and 5.3 below). However, if there are infinitely many topological “obstacles”, hyperbolicity can fail, as in the case of the two-dimensional jungle gym (a \mathbb{Z}^2-covering of a torus with genus two).

The results in this section are useful since they not only provide many examples of hyperbolic Riemann surfaces, but also allow to establish criteria for deciding whether a Riemann surface is hyperbolic or not.

Definition 5.1. If c is a positive constant, we say that an open non-exceptional Riemann surface S has c-wide genus if every simple closed geodesic $\gamma \subset S$ such that $S \setminus \gamma$ is connected, verifies $L_S(\gamma) \geq c$. We say that S has narrow genus if there is not $c > 0$ such that S has c-wide genus.

The two following general criteria guarantee that many surfaces are not hyperbolic.

Theorem 5.1. Let us consider an open non-exceptional Riemann surface S, a closed set E in S with $S \setminus E$ path-connected, and $X^n_1, X^n_2 \subset S$ bordered surfaces such that $X^n_1 \setminus E$ is path-connected, $X^n_1 \cap X^n_2 = \partial X^n_1 \setminus \partial X^n_2 = \cup_{g \in A^n} \eta^n_1$, $\#A^n \geq 2$, and $d_{X^n_1}(\eta^n_1, \eta^n_2) \geq c_n$ for every $i, j \in A^n$, $i \neq j$. If $\limsup_{n \to \infty} c_n = \infty$, then S and $S \setminus E$ are not hyperbolic.

Proof. It is clear that S is not hyperbolic, as a consequence of Theorem 3.2 (recall that, for each fixed n, any ball intersects at most a finite number of η^n_1’s, by definition of bordered non-exceptional Riemann surface, and then each η^n_1 is a closed set). In order to apply Theorem 3.2 to $\tilde{X} = S \setminus E$, let us define $\tilde{X}^n_i = X^n_i \setminus E$ and $\tilde{\eta}^n_i = \eta^n_i \setminus E$ (which is a closed set in $S \setminus E$). It is well known (see e.g. Lemma B below) that if γ is a curve in $S \setminus E$, then $L_{S \setminus E}(\gamma) \geq L_S(\gamma)$; since every curve in \tilde{X}^n_i is contained in X^n_i, it follows that $d_{X^2}(\tilde{\eta}^n_i, \tilde{\eta}^n_j) \geq d_{X^2}(\eta^n_i, \eta^n_j) \geq d_{X^2}(\eta^n_i, \eta^n_j) \geq c_n$ for every $i, j \in A^n$, $i \neq j$. Then Theorem 3.2 implies that $S \setminus E$ is not hyperbolic. □

Theorem 5.2. Let us consider an open non-exceptional Riemann surface S with narrow genus and a closed set E in S, with $S \setminus E$ path-connected and $\Pi_1(S) \leq \Pi_1(S \setminus E)$. Then S and $S \setminus E$ are not hyperbolic.

Proof. Since S has narrow genus, we can choose a sequence of simple closed geodesics $\{\gamma_n\}_n$ in S with $S \setminus \gamma_n$ connected and $\lim_{n \to \infty} L_S(\gamma_n) = 0$.

The Collar Lemma [R] says that there exists a collar of γ_n of width d, for every $0 < d \leq d_n$, where $\cosh d_n = \coth(L_S(\gamma_n))/2$. We define X^n_2 as the collar of γ_n of width $d_n/2$, X^n_3 as the closure in S of $S \setminus X^n_2$, $A^n = \{1, 2\}$ and η^n_1, η^n_2, the connected components of $X^n_1 \cap X^n_2$.

Then $d_{X^n_2}(\eta^n_1, \eta^n_2) = d_n \longrightarrow \infty$, and consequently S is not hyperbolic by Theorem 3.2 (recall that A^n has just two elements).

In order to study $\tilde{X} = S \setminus E$, let us consider for each n a simple closed curve g_n in S transversal to γ_n. Since $\Pi_1(S) \leq \Pi_1(S \setminus E)$, we can assume that $g_n \subset S \setminus E$, and even that g_n is a simple closed geodesic in $S \setminus E$. We denote by h_n a segment of g_n joining η^n_1 and η^n_2 in X^n_2. Let us define \tilde{X}^n_1 as the connected component of $X^n_2 \setminus E$ containing h_n, \tilde{X}^n_2 as the closure in $\tilde{X} \setminus \tilde{X}^n_2$, $\tilde{A}^n = \{1, 2\}$ and $\tilde{\eta}^n_1, \tilde{\eta}^n_2$, the connected components of $\tilde{X}^n_1 \cap \tilde{X}^n_2$. Since $d_{X^n_2}(\tilde{\eta}^n_1, \tilde{\eta}^n_2) \geq d_{X^n_2}(\eta^n_1, \eta^n_2) \geq d_{X^n_2}(\eta^n_1, \eta^n_2) = d_n$, Theorem 3.2 allows us to conclude that $S \setminus E$ is not hyperbolic. □

We say that a Riemann surface is doubly connected if its fundamental group is isomorphic to \mathbb{Z}.
Definition 5.2. Let us consider a non-exceptional Riemann surface S of finite type (with or without boundary); if S is bordered, we also require that the components of ∂S with infinite length are local geodesics. An outer loop in S is a simple closed geodesic which is either the boundary curve of a funnel or freely homotopic to some component of ∂S. A generalized funnel in S is a doubly connected Riemann surface isometric to a subset of an annulus, whose boundary is a simple closed curve. A generalized outer loop in S is a simple closed geodesic in S which is either the boundary curve of a generalized funnel or freely homotopic to some component of ∂S. The characteristic of S is $a = 2g - 2 + n$, where g is the genus of S and n is the sum of the number of punctures of S and the number of generalized outer loops of S.

Remark. If γ is a closed curve not freely homotopic either to a point or to the boundary of a collar of a puncture, it is well known that there exists a unique simple closed geodesic in the free homotopy class of γ in S.

Notice that if S has no boundary, then every generalized outer loop in S is an outer loop.

Definition 5.3. We denote by $S(a,l)$ the set of non-exceptional Riemann surfaces of finite type S verifying the following properties: if S is bordered, then the components of ∂S with infinite length are local geodesics, S has characteristic less or equal than a and no genus, and every generalized outer loop has length less or equal than l. We denote by $S_G(a,l)$ the set of Riemann surfaces $S \in S(a,l)$ verifying the additional property: if S is bordered, then ∂S is the union of local geodesics (closed or non-closed).

We need the following result.

Theorem E. ([RT3, Theorem 3.4]) For each $l \geq 0$ and each non-negative integer a, there exists a constant $\delta = \delta(a,l)$, which only depends on a and l, such that every surface in $S_G(a,l)$ is δ-hyperbolic.

The hyperbolicity constants of Riemann surfaces in $S(a,l)$ can be uniformly bounded by means of the following result. This theorem can be also viewed as a result on stability of the hyperbolicity of Riemann surfaces. Theorem 5.3 plays a fundamental role in the proofs of theorems 5.4 and 5.5.

Theorem 5.3. For each $l \geq 0$ and each non-negative integer a, there exists a constant $\delta = \delta(a,l)$, which only depends on a and l, such that every surface in $S(a,l)$ is δ-hyperbolic.

Proof. The idea of the proof is to see a surface in $S(a,l)$ as a subset of a surface in $S_G(a,l)$, and then to check that we can apply Theorem D. Let us consider $S \in S(a,l)$ and R_0 an open non-exceptional Riemann surface with $S \subseteq R_0$.

If there is no simple closed geodesic in R_0 freely homotopic to some closed curve in ∂S, then the fundamental group of R_0 is isomorphic to some subgroup of the fundamental group of S (every closed curve in ∂S is either trivial in R_0 or homotopic to a puncture in R_0). In this case we define $R := R_0$.

If this is not so, we denote by $\gamma_1, \ldots, \gamma_k$, the simple closed geodesics in R_0 which are freely homotopic to some closed curve in ∂S. If we cut R_0 along $\gamma_1, \ldots, \gamma_k$, we obtain bordered surfaces R_0^1, \ldots, R_0^m. We have that the fundamental group $\Pi_1(S \cap R_0^j)$ has at most one generator, except perhaps for one j. Then we can assume that the fundamental group $\Pi_1(S \cap R_0^j)$ has at most one generator for $j = 2, \ldots, m$, and that $\Pi_1(S \cap R_0^1)$ is not trivial. Then $\gamma_1, \ldots, \gamma_k$ are the simple closed geodesics in ∂R_0^1; let us consider funnels F^1, \ldots, F^k, with $L(\partial F^j) = L(\gamma_j)$ for $j = 1, \ldots, k$. If we paste F^1, \ldots, F^k to R_0^1, we obtain an open non-exceptional Riemann surface R.

In any case, we can see S as a subset of R; we also have that the fundamental group of R is isomorphic to some subgroup of the fundamental group of S (some closed curves in ∂S can be trivial in R); therefore $R \in \mathcal{S}_G(a, l)$, and the closure of $R \setminus S$ is the union of simply or doubly connected bordered surfaces R^1, \ldots, R^s, with $s \leq a+2$ (some R^i can be a neighborhood of a puncture). We have that $\delta(R) \leq \delta(a, l)$ by Theorem E and hence, Theorem D allows us to obtain that $\delta(S) \leq \delta(a, l)$, since $L(\partial S) \leq (a+2)l$ implies that $\{S, R^1, \ldots, R^s\}$ is a $(l, 0, (a+2)l)$-tree-decomposition of R (taking $A_n = \emptyset$). \square

We say that a Riemann surface is triply connected if it has characteristic 1 and genus 0, or equivalently, if its fundamental group is generated by two disjoint simple closed curves.

We need the following results in order to prove our next theorem.

Theorem F. ([PRT2, Proposition 3.2]) Let S be a triply connected bordered non-exceptional Riemann surface. Let us assume that ∂S is the union of two simple closed curves verifying $L_S(\partial S) \leq l$. Then S is δ-hyperbolic, where δ is a constant which only depends on l.

The arguments in the proof of Theorem 5.3 (using theorems E and F) allow to deduce the following result.

Lemma 5.1. Let S be a triply connected non-exceptional Riemann surface (with or without boundary). Let us assume that there are two generalized outer loops in S with length less or equal than l. Then S is δ-hyperbolic, where δ is a constant which only depends on l.

Remark. In Theorem F and Lemma 5.1 we can see a puncture as an outer loop with zero length.

Lemma B. ([APR, Lemma 3.1]) Let us consider an open non-exceptional Riemann surface S, a closed non-empty subset C of S, and a positive number ε. If $S^\ast := S \setminus C$, then we have that $1 < L_S(\gamma)/L_S(\gamma) < \coth(\varepsilon/2)$, for every curve $\gamma \subset S$ with finite length in S such that $d_S(\gamma, C) \geq \varepsilon$.

Definition 5.4. Given a doubly connected domain D in a non-exceptional Riemann surface, there exists $0 \leq \mu < 1$ such that $\{z : \mu < |z| < 1\}$ is conformally equivalent to D. We define the modulus of D as $\text{mod } D := \frac{1}{2\pi} \log \frac{1}{\mu}$.

Remark. The modulus of a doubly connected domain D can be defined in terms of extremal length (see [AS, p. 224]). It is well known that the simple closed geodesic in D (with respect to the Poincaré metric in D) has length $\pi/\text{mod } D$.

Definition 5.5. A N-normal neighborhood of a subset F of a Riemann surface S is a bordered Riemann surface V such that $F \subset V \subset S$, verifying either:

(i) V is compact and ∂V is the union of n closed curves ($1 \leq n \leq N$), which generate the fundamental group of V;

(ii) V is homeomorphic to a funnel (then V is isometric to a non-compact subset of an annulus or of the punctured disk D^*; recall that a collar of a puncture is homeomorphic to a funnel).

A set $E = \cup_n E_n$ in an open non-exceptional Riemann surface S, with $\{E_n\}_n$ compact sets is called (r, s, N)-uniformly separated in S if there exist N-normal neighborhoods $\{V_n\}_n$ of E_n such that $V_n \setminus E_n$ is connected, $d_S(\partial V_n, E_n) \geq r$, $L_S(\partial V_n) \leq s$ for every n, and $d_S(V_n, V_m) \geq r$ for every $n \neq m$.

$E = \cup_n E_n$ is called (r, s, t, N)-uniformly separated in S if it is (r, s, N)-uniformly separated in S, E_n is simply connected for every n, and it verifies the following property: if V_n is isometric to a non-
compact subset of an annulus or if \(\partial V_n \) contains at least 3 closed curves, then there exists a simply connected domain \(D_n \) in \(S \), with \(E_n \subset D_n \) and \(\text{mod}(D_n \setminus E_n) \geq t \).

Remarks.

1. If \(E \) is \((r, s, t, N)\)-uniformly separated, each \(E_n \) is simply connected and then it creates a puncture (if \(E_n \) is a single point) or a funnel (in other case) in \(S^* \). Although this is an important case for us, let us observe that we also deal with general compact sets \(E_n \) if \(E \) is \((r, s, N)\)-uniformly separated.

2. Notice that a \(N \)-normal neighborhood has genus 0, and consequently, \(V_n \in S(\max\{N-2, 1\}, s) \subseteq S(N, s) \) if \(E \) is \((0, s, N)\)-uniformly separated in \(S \).

3. We want to remark that we do not require \(D_n \subseteq V_n \).

4. If \(E_n \) is a single point, we have \(\text{mod}(D_n \setminus E_n) = \infty > t \), for any choice of \(D_n \) and \(t \). If \(V_n \) is compact and \(\partial V_n \) is the union of one or two closed curves, or if \(V_n \) is isometric to a non-compact subset of the punctured disk \(D^* \); then there is no condition on \(E_n \) about modulus.

The uniformly separated sets play a central role in the study of hyperbolic isoperimetric inequalities in open Riemann surfaces (see [APR, Theorem 1] and [FR1, Theorems 3 and 4]), and in other topics in Complex Analysis, such as harmonic measure (see [OS]). There are interesting relations of the hyperbolic isoperimetric inequality with other conformal invariants of a Riemann surface (see e.g. [APR], [C, p. 95], [FR1], [Su, p. 333]).

We need the following definition in order to state one of our main theorems.

Definition 5.6. Let \(S \) be an open non-exceptional Riemann surface and \(E = \cup_n E_n \) a \((r, s, N)\)-uniformly separated set in \(S \). For each choice of \(\{V_n\}_n \) we define

\[
D_S = D_S(\{V_n\}_n) := \sup_{n,i,j} \left\{ d_{S|V_n}(\eta^n_i, \eta^n_j) : \eta^n_i, \eta^n_j \text{ are different connected components of } \partial V_n \text{ and } \eta^n_i, \eta^n_j \text{ are in the same connected component of } S \setminus \text{int } V_n \right\},
\]

\[
D_{S^*} = D_{S^*}(\{V_n\}_n) := \sup_{n,i,j} \left\{ d_{S^*|V_n\setminus E_n}(\eta^n_i, \eta^n_j) : \eta^n_i, \eta^n_j \text{ are different connected components of } \partial V_n \text{ and } \eta^n_i, \eta^n_j \text{ are in the same connected component of } S \setminus \text{int } V_n \right\}.
\]

Proposition 5.1. Let \(S \) be an open non-exceptional Riemann surface and \(E = \cup_n E_n \) a \((r, s, N)\)-uniformly separated set in \(S \). Let us assume also that we can choose the sets \(\{V_n\}_n \) such that \(D_S(\{V_n\}_n) = \infty \) (respectively \(D_{S^*}(\{V_n\}_n) = \infty \)). Then \(S \) (respectively \(S^* \)) is not hyperbolic.

Remark. The conclusion “\(S \) is not hyperbolic” is also true if \(E = \cup_n E_n \) is a \((0, s, N)\)-uniformly separated set in \(S \); in fact, in this part of the proof we do not use the set \(E \) at all.

Proof. Let us assume that \(D_S = \infty \). For each \(V_n \) we consider the connected components \(\{\eta^n_i\}_i \) of \(\partial V_n \). By hypothesis, there exist \(n_k, i_k, j_k \), such that \(\lim_{k \to \infty} d_{V_n}(\eta^n_{i_k}, \eta^n_{j_k}) = \infty \), with \(\eta^n_{i_k}, \eta^n_{j_k} \) in the same connected component of \(S \setminus \text{int } V_n \).

Let us define \(X^k_2 := V_{n_k} \), \(X^k_1 \) as the connected component of \(S \setminus \text{int } V_{n_k} \) containing \(\eta^n_{i_k} \cup \eta^n_{j_k} \) and \(X^k_3 \) as the union of the other components of \(S \setminus \text{int } V_{n_k} \) (if any).

Since there are at most \(N \) terms in the union of \(i \) in \(\{\eta^n_i\}_i \), and \(\sum_i L_S(\eta^n_i) = L_S(\partial V_n) \leq s \), Theorem 3.4 guarantees that \(S \) is not hyperbolic.

If \(D_{S^*} = \infty \), we obtain a similar result for \(S^* \), since \(d_{S^*}(\partial V_n, E_n) \geq r \) and Lemma B imply the inequality \(L_{S^*}(\partial V_n) \leq s \coth(r/2) \). □
Since $D_S(\{V_n\}_n) \leq D_{S^*}(\{V_n\}_n)$, we deduce the following result.

Corollary 5.1. Let S be an open non-exceptional Riemann surface and $E = \cup_i E_n$ a (r, s, N)-uniformly separated set in S. Let us assume also that we can choose the sets $\{V_n\}_n$ such that $D_S(\{V_n\}_n) = \infty$. Then S and S^* are not hyperbolic.

Next, we will state the main result of the paper. It allows one, in many cases, to study the hyperbolicity of a Riemann surface in terms of the local hyperbolicity of its ends; this fact is a significant simplification in the study of the hyperbolicity. Besides, we have determined which are the relevant parameters in the hyperbolicity constants.

Theorem 5.4. Let S be an open non-exceptional Riemann surface and $E = \cup_i E_n$ a (r, s, N)-uniformly separated set in S. Then, $S^* := S \setminus E$ is δ^*-hyperbolic if and only if S is δ-hyperbolic, $D_{S^*}(\{V_n\}_n)$ is finite and $V_n \setminus E_n$ is k-hyperbolic for every n (with $d_{S^*} \mid V_n \setminus E_n$).

Furthermore, if $D_{S^*}(\{V_n\}_n)$ is finite and $V_n \setminus E_n$ is k-hyperbolic for every n, then δ^* (respectively δ) is a universal constant which only depends on $r, s, N, k, D_{S^*}(\{V_n\}_n)$ and δ (respectively $r, s, N, D_{S^*}(\{V_n\}_n)$ and δ^*).

Remark. Recall that $d_{S^*} \neq d_S | S^*$, since (S^*, d_{S^*}) is a geodesically complete Riemannian manifold (the points of E are at infinite d_{S^*}-distance of the points of S^*; in fact, S^* is an open non-exceptional Riemann surface).

Proof. If $D_{S^*}(\{V_n\}_n) = \infty$, Proposition 5.1 gives that S^* is not hyperbolic. We see now that if $D_{S^*}(\{V_n\}_n) < \infty$, S^* is hyperbolic if and only if S is hyperbolic and $V_n \setminus E_n$ is k-hyperbolic for every n. This fact finishes the proof.

The heart of the proof is to construct two tree-decompositions $\{X_n\}_{n \in \Lambda}$ of S and $\{X_n^*\}_{n \in \Lambda}$ of S^* which, thanks to Theorem D, will allow us to relate the hyperbolicity of S and S^*.

In order to obtain the tree-decompositions, we need to construct open sets U_n with better properties than V_n. On the one hand, if every connected component η of ∂V_n disconnects S (in particular, if ∂V_n is connected), we define $U_n := \text{int} V_n$. On the other hand, if ∂V_n has a connected component η, with $S \setminus \eta$ connected (and then we have another connected component with the same property), we obtain an open set U_n, modifying V_n in the following way: We consider every two different connected components η_n^i, η_n^j of ∂V_n with η_n^i, η_n^j in the same connected component of $S \setminus \text{int} V_n$: if $d_{S^*} \mid V_n(\eta_n^i, \eta_n^j) < r/2$, let us denote by $s_{n_i}^n$ a geodesic in V_n (with $d_{S^*} \mid V_n$) joining η_n^i and η_n^j with $L_{S^*}(s_{n_i}^n) = d_{S^*} \mid V_n(\eta_n^i, \eta_n^j) < r/2$; then $d_{S^*} \mid V_n(s_{n_i}^n, E_n) \geq r/2$, and $d_{S^*}(s_{n_i}^n, E) \geq r/2$ (since $d_{S^*}(\partial V_n, E_n) \geq r$ and $d_{S^*}(V_n, V_m) \geq r$), and hence Lemma B gives $L_{S^*}(s_{n_i}^n) \leq \coth(r/4) L_{S^*}(s_{n_i}^n) \leq (r/2) \coth(r/4)$; if $d_{S^*} \mid V_n(\eta_n^i, \eta_n^j) \geq r/2$, let us denote by $s_{n_i}^n$ a geodesic in $V_n \setminus E_n$ (with $d_{S^*} \mid V_n \setminus E_n$) joining η_n^i and η_n^j with $L_{S^*}(s_{n_i}^n) = d_{S^*} \mid V_n \setminus E_n(\eta_n^i, \eta_n^j) \leq D_{S^*}(\{V_n\}_n)$. Let us define $D_{S^*} := \max\{r/2, \coth(r/4)\}$, then $L_{S^*}(s_{n_i}^n) \leq D_{S^*}$.

It is clear that $U_n := \text{int} V_n \setminus \cup_{i \neq j} s_{n_i}^n$ is an open set; if $\eta_n^i, \ldots, \eta_n^{i_k}$, are in the same connected component of $S \setminus \text{int} V_n$, then they are contained in the same connected component $\eta_n^{i_1, \ldots, i_k}$ of ∂U_n (notice that $S \setminus \eta_n^{i_1, \ldots, i_k}$ is not connected); if η_n^i is a connected component of ∂U_n and it is also a connected component of ∂U_n, then it disconnects S; hence every connected component of ∂U_n disconnects S.

It is clear that $E_n \subset U_n$ (since $s_{n_i}^n$ is a geodesic in V_n with $L_{S^*}(s_{n_i}^n) < r/2$ or a geodesic in $V_n \setminus E_n$). We also have $U_n = V_n$ and $d_{S^*}(U_n, U_m) = d_{S^*}(V_n, V_m) \geq r$.
Let us denote by K the set of indices of n (K is finite or countable). For each $n \in K$, let us define $X_n := \overline{U}_n = V_n$ and $X^*_n := \overline{U}_n \setminus E_n = V_n \setminus E_n$.

Let us consider the connected components $\{X_n\}_{n \in J}$ of $S \setminus \bigcup_{n \in K} U_n$. If we define $X^*_n := X_n$ for $n \in J$, and $\Lambda := K \cup J$, then $S = \bigcup_{n \in \Lambda} X_n$ and $S^* = \bigcup_{n \in \Lambda} X^*_n$.

Claim. We claim now that $\{X_n\}_{n \in \Lambda}$ and $\{X^*_n\}_{n \in \Lambda}$ are $(k_1, k_1/r, N, k_1)$-tree-decompositions of S and S^*, respectively, where $k_1 := s \coth(r/2) + D'_S$.

We continue the proof, assuming this claim to be true for the moment.

For any $n \in K$, we have that $X_n = \overline{U}_n = V_n$ belongs to $S(N, s)$ (see Remark 2 after Definition 5.5); consequently, Theorem 5.3 gives that X_n is k_3-hyperbolic, with a constant k_5 which only depends on N and s.

If $n \in J$, let us recall that $X_n = X^*_n$ is a union of bordered Riemann surfaces and geodesics. If s^{m}_{ij} is one of such curves, we consider two cases:

(i) If $d_S|_{V_n}(\eta_{i}^m, \eta_{j}^m) < r/2$, we have by Lemma B, $1 < L_{S^*}(s^{m}_{ij})/L_S(s^{m}_{ij}) < \coth(r/4)$.

(ii) If $d_S|_{V_n}(\eta_{i}^m, \eta_{j}^m) \geq r/2$, then $D_S^* \geq L_{S^*}(s^{m}_{ij})$ and $L_S(s^{m}_{ij}) \geq r/2$, and we conclude $1 < L_{S^*}(s^{m}_{ij})/L_S(s^{m}_{ij}) \leq 2D'_S/r$.

Since $\max\{\coth(r/4), 2D'_S/r\} = (2/r) \max\{(r/2) \coth(r/4), D'_S\} = 2D'_S/r$, then we have in any case $1 < L_{S^*}(s^{m}_{ij})/L_S(s^{m}_{ij}) \leq 2D'_S/r$. Consequently, we can define a map $i_n : X_n \rightarrow X^*_n$, which is the identity in each bordered Riemann surface and a dilatation in the geodesics joining the bordered surfaces. In the bordered surfaces the identity is a $(\coth(r/2), 0)$-quasi-isometry by Lemma B. Since $\coth(r/2) \leq 2D'_S/r$, then this map i_n (and i_n^{-1}) is a $(2D'_S/r, 0)$-quasi-isometry.

Consequently, Theorem B gives that if X^*_n is k_4'-hyperbolic for every $n \in J$, then X_n is k_4-hyperbolic for every $n \in J$, where k_4 only depends on r, D_S^* and k_4'; and that if X_n is k_4-hyperbolic for every $n \in J$, then X^*_n is k_4'-hyperbolic for every $n \in J$, where k_4' only depends on r, D_S^* and k_4.

Let us assume that S^* is δ^*-hyperbolic. Hence, Theorem D guarantees that X^*_n is k_4'-hyperbolic for every $n \in \Lambda$ (where k_4' only depends on r, s, N, D_S^* and δ^*); consequently, $V_n \setminus E_n$ is k_4'-hyperbolic for every $n \in K$ and X_n is k_4-hyperbolic for every $n \in J$ (where k_4 only depends on r, s, N, D_S^* and δ^*). Since X_n is k_3-hyperbolic for every $n \in K$, if we apply Theorem D again, we obtain that S is δ-hyperbolic, where δ only depends on r, s, N, D_S^* and δ^*.

Let us assume now that S is δ-hyperbolic and X^*_n is k-hyperbolic for every $n \in K$. Hence, Theorem D guarantees that X_n is k_4-hyperbolic for every $n \in J$ (where k_4 only depends on r, s, N, D_S^* and δ), and consequently X^*_n is k_4'-hyperbolic for every $n \in J$ (where k_4' only depends on r, s, N, D_S^* and δ). If we apply Theorem D again, we obtain that S^* is δ^*-hyperbolic, where δ^* only depends on r, s, k, N, D_S^* and δ.

Let us prove now the claim.

If $n \in K$, we have that each X_n (with $d_S|_{X_n}$) and X^*_n (with $d_S^*|_{X^*_n}$) are bordered non-exceptional Riemann surfaces; hence they are geodesic metric spaces.

Notice that for each $n \in J$, X_n is a bordered surface or a union of bordered surfaces $\bigcup_m M_m$, with M_m_1 and M_m_2 joined by geodesics in S and/or in S^*. These geodesics are contained in $\bigcup_k V_k$, and there are at most a finite number of them in each V_k. The condition $d_S(V_{n_1}, V_{n_2}) \geq r$ for every $n_1 \neq n_2$ guarantees that any ball in S (or in S^*) intersects at most a finite number of V_k’s. Hence, X_n and X^*_n are geodesic metric spaces.

(a) We have $X_n \cap X_m = X^*_n \cap X^*_m =: \sigma_{nm}$, where σ_{nm} is connected: It is clear if $n \in K$, since
then every connected component σ of ∂U_n disconnects S; if $n \in J$ and $X_n \cap X_m \neq \emptyset$, then $m \in K$, and we can apply the last argument with m instead of n (notice that $X_n \cap X_m = \emptyset$ if $n, m \in J$ or $n, m \in K$). Notice that, if $n \in K$, σ_{nm} is a connected component of ∂U_n; we have already seen during the construction of X_n, that $X_n \setminus \sigma_{nm}$ is not connected. It is obvious that $\{\sigma_{nm}\}_m$ are pairwise disjoint closed subsets of X_n.

Any geodesic in S with finite length meets at most a finite number of σ_{nm}’s, since $d_S(U_n, U_m) \geq r$ for any $n \neq m$, and $\{\sigma_{nm}\}_m$ is a set with at most N elements, for any $n \in K$. The same result is true in S^*.

(b) Lemma B guarantees that $\text{diam}_{X_n}(\sigma_{nm}) \leq \text{diam}_{X_n}(\sigma_{nm}) \leq L_{S^*}(\partial V_n) + D_{S^*} \leq s \coth(r/2) + D_{S^*} = k_1$, if $n \in K$; if $n \notin K$, then $m \in K$ and we obtain the same result.

If $n \in K$, we choose $A_n = \emptyset$; then we have $\sum_m \text{diam}_{X_n}(\sigma_{nm}) \leq \sum_m \text{diam}_{X_n}(\sigma_{nm}) \leq Nk_1$.

If $n \in J$, we choose $A_n = \Lambda$; then $d_{X_n}(\sigma_{nm}, \sigma_{nk}) \geq d_{X_n}(\sigma_{nm}, \sigma_{nk}) \geq d_S(V_m, V_k) \geq r \geq (r/k_1) \text{diam}_{X_n}(\sigma_{nm}) \geq (r/k_1) \text{diam}_{X_n}(\sigma_{nm})$.

These facts prove the claim. \square

The next result is a consequence of Theorem 5.4; it allows one, in many cases, to forget punctures and funnels (and more general ends) in order to study the hyperbolicity of a Riemann surface; this fact can be a significant simplification in the topology of the surface, and therefore makes easier the study of its hyperbolicity. Recall that to delete an isolated point from S gives a puncture in S^*, and that to delete a closed simply connected set from S gives a funnel in S^*.

The statement of Theorem 5.5 has one more hypothesis about E than Theorem 5.4, and therefore this allows us to obtain a simpler conclusion.

Theorem 5.5. Let S be an open non-exceptional Riemann surface and $E = \bigcup_{n} E_{\alpha}$ a (r, s, t, N)-uniformly separated set in S. Then, $S^* := S \setminus E$ is δ^*-hyperbolic if and only if S is δ-hyperbolic and $D_{S^*}(\{V_n\}_n)$ is finite.

Furthermore, if $D_{S^*}(\{V_n\}_n)$ is finite, then δ^* (respectively δ) is a universal constant which only depends on $r, s, t, N, D_{S^*}(\{V_n\}_n)$ and δ (respectively $r, s, N, D_{S^*}(\{V_n\}_n)$ and δ^*).

Proof. In order to apply Theorem 5.4, we only need to prove that $X_n^* := V_n \setminus E_n$ is k-hyperbolic for every $n \in K$, where k is a constant which only depends on r, s, t and N.

Recall that for any $n \in K$, $X_n = V_n$ is compact and belongs to $\mathcal{S}(N, s)$, or V_n is homeomorphic to a funnel.

Let us denote by γ_n (respectively γ_n^*) the simple closed geodesic in X_n^* (respectively in S^*) which “surrounds” E_n (if E_n is a single point, we see γ_n as a puncture and $L_{S^*}(\gamma_n) = 0$).

If ∂V_n contains at least 3 closed geodesics, we denote by γ_n' the simple closed geodesic in $D_n \setminus E_n$; since $D_n \setminus E_n \subseteq S^*$, we have $L_{S^*}(\gamma_n^*) \leq L_{S^*}(\gamma_n') \leq L_{D_n \setminus E_n}(\gamma_n') = \pi/\text{mod}(D_n \setminus E_n) \leq \pi/t$. Since Lemma B implies $L_{S^*}(\partial V_n) < L_{S^*}(\partial V_n) \coth(r/2) \leq s \coth(r/2)$, we deduce that $L_{S^*}(\gamma_n) \leq L_{S^*}(\gamma_n^*) + L_{S^*}(\partial V_n) < s \coth(r/2) + \pi/t$.

Notice that any generalized outer loop γ distinct of γ_n in $X_n^* = V_n \setminus E_n$, is freely homotopic to some closed curve in ∂V_n; then Lemma B guarantees that $L_{S^*}(\gamma) \leq L_{S^*}(\partial V_n) < s \coth(r/2)$. Hence, $X_n^* \in \mathcal{S}(N + 1, s \coth(r/2) + \pi/t)$. Theorem 5.3 guarantees that X_n^* is k^*_n-hyperbolic, with a constant k^*_n which only depends on r, s, t and N.
If V_n is isometric to a non-compact subset of an annulus or of the punctured disk D^*, a similar argument to the last one (using now Lemma 5.1 instead of Theorem 5.3) gives the same conclusion; in the case of D^*, we do not need the condition about modulus, since there are two closed curves of bounded length in X_n: ∂V_n and the puncture.

Let us consider now any $n \in K$ such that V_n is compact and ∂V_n is the union of one or two closed curves. A similar argument (using now Theorem 5.3 or Theorem F respectively) gives the same conclusion. □

Theorem 5.5 has the following direct consequence.

Corollary 5.2. Let S be an open non-exceptional Riemann surface and $E = \cup_n E_n$ a (r, s, t, N)-uniformly separated set in S. Let us assume also that we can choose the sets $\{V_n\}_n$ such that every connected component of each ∂V_n disconnects S. Then, $S^* := S \setminus E$ is δ^*-hyperbolic if and only if S is δ-hyperbolic. Furthermore, δ^* (respectively δ) is a universal constant which only depends on r, s, t, N and δ (respectively r, s, N and δ^*).

We can also obtain the following improvements of Theorem 5.5.

Corollary 5.3. The conclusion of Theorem 5.5 also holds if we weaken the definition of (r, s, t, N)-uniformly separated set in the following way: For an arbitrary subset of n’s with V_n isometric to a non-compact subset of an annulus, $\text{diam}(E_n) \leq 1/t$ and $d_s(\partial V_n, E_n) \leq 1/t$.

Proof. Let us denote by K_0 the set of indices n with V_n isometric to a non-compact subset of an annulus, $\text{diam}(E_n) \leq 1/t$ and $d_s(\partial V_n, E_n) \leq 1/t$. In order to follow the proof of Theorem 5.5, we only need to check that X_n^* is k_2^*-hyperbolic for every $n \in K_0$, with a constant k_2^* which only depends on r, s and t. Lemma 5.1 implies this fact if we can find two generalized outer loops in X_n^* with length less or equal than $c = c(r, s, t)$.

Fix $n \in K_0$. Let us denote by g_n the simple closed geodesic in S freely homotopic to ∂V_n and by F_n the funnel in S with boundary g_n; there exists g_n since V_n is isometric to a non-compact subset of an annulus and then V_n can not be a neighborhood of a puncture. We obviously have $L_S(g_n) \leq L_S(\partial V_n) \leq s$.

If ∂V_n intersects F_n, we define $l := d_s(\partial V_n, g_n)$; in other case, we define $l := 0$. Let us consider the boundary g''_n of the collar of g_n of width l which is contained in F_n. It is well known that $L_S(g_n') = L_S(g_n) \cosh l$; this computation can be easily checked using Fermi coordinates (see e.g. [C, p. 247]). We also have $L_S(g_n') \leq L_S(\partial V_n) \leq s$ (see e.g. [B, Lemma 4]). Consequently, $L_S(g_n)e^l \leq 2s$.

Let us denote by g''_n the boundary curve of the collar of g_n of width $x := l + 2/t + s/2 + r$ which is contained in F_n. Since $L_S(g''_n) = L_S(g_n) \cosh x$, we deduce that $L_S(g''_n) \leq L_S(g_n)e^{2(t+s)/2+r} \leq 2se^{2(t+s)/2+r}$.

Notice that $d_s(g_n', E_n) \geq d_s(g_n', g_n) - d_s(g_n, g_n') - \text{diam}(\partial V_n) - d_s(\partial V_n, E_n) - \text{diam}(E_n) \geq x - l - s/2 - 1/t - 1/t = r$. Hence, Lemma B implies that $L_S(\partial V_n') \leq 2se^{2(t+s)/2+r} \coth(r/2)$ and $L_S(\partial V_n') \leq s \coth(r/2)$. If ∂V_n intersects F_n, the curve g''_n is contained in X_n^*, since ∂V_n is contained in the collar of g_n of width $l + s/2$. If ∂V_n does not intersect F_n, we also have that the curve g''_n is contained in X_n^*, since $g''_n \subset F_n \subset V_n = X_n$. If g_n' is the generalized outer loop in X_n^* freely homotopic to g_n' in X_n^*, it is clear that $L_S(\partial V_n') \leq L_S(\partial V_n, E_n) \leq 2se^{2(t+s)/2+r} \coth(r/2)$, and Lemma 5.1 finishes the proof. □
With similar arguments we can prove the following result.

Corollary 5.4. The conclusion of Theorem 5.5 also holds if we weaken the definition of (r,s,t,N)-uniformly separated set in the following way: For an arbitrary subset of n's with V_n isometric to a non-compact subset of an annulus, we can substitute the hypothesis "there exists a simply connected domain D_n in S, with $E_n < D_n$ and $\text{mod}(D_n \setminus E_n) \geq t"$, by \(\min \{L_S(\gamma_2^n), L_S(\gamma_3^n)\} \leq 1/t\", where γ_2^n, γ_3^n are the outer loops in S^* corresponding to $V_n \setminus E_n$.

Condition \(\min \{L_S(\gamma_2^n), L_S(\gamma_3^n)\} \leq 1/t\" for an arbitrary subset of n's with V_n isometric to a non-compact subset of an annulus, is sharp; in fact, it is equivalent to "$V_n \setminus E_n$ is k-hyperbolic" for every n in that subset of n's. This equivalence is a direct consequence of Corollary 5.5 below. In order to prove Corollary 5.5 we need the following result, which is interesting by itself.

Theorem 5.6. Let us consider $L_1, L_2 > 0$ and the generalized Y-piece Y_0 with simple closed geodesics $\gamma_1, \gamma_2, \gamma_3$ of lengths $l_1 \leq l_2 \leq l_3$ verifying $0 \leq l_1 \leq L_1$ and $L_2 \leq l_2, l_3$. Let S be any non-exceptional Riemann surface (with or without boundary) containing Y_0 such that γ_2, γ_3 are outer loops in S. The sharp hyperbolicity constant δ of S satisfies $\delta \geq D(L_1, L_2)$, where $\lim_{L_4 \to \infty} D(L_1, L_2) = \infty$, for any fixed L_1.

Remark. As we will see in the proof, the hypothesis "γ_2, γ_3 are outer loops in S" can be substituted by "a geodesic in S joining two points of γ_2 only can exit of Y_0 by crossing γ_1". We have examples which show that the conclusion of Corollary 5.4 does not hold if a geodesic in S joining two points of γ_2 can exit of Y_0 by crossing γ_2 or γ_3.

In order to prove Theorem 5.6, we need the following elementary lemma (see [RT2, Lemma 3.1] for a proof).

Lemma C. Let us consider a geodesic metric space X and $\varepsilon > 0$. If γ is a continuous curve joining $x, y \in X$ with $L_X(\gamma) \leq d_X(x, y) + \varepsilon$, then γ is a $(1, \varepsilon)$-quasigeodesic with its arc-length parametrization.

Proof. The idea that lies behind the proof is that given two points in γ_2, the distance between them is approximately the length of a subcurve of γ_2 joining them. Let us denote by $p_2 \in \gamma_2, p_3 \in \gamma_3$, the points with $d_{\gamma_2}(p_2, p_3) = d_{\gamma_3}(\gamma_2, \gamma_3) =: s$. We choose the points $q_2 \in \gamma_2, q_3 \in \gamma_3$, with $d_{\gamma_2}(p_2, q_2) = l_2/2$ and $d_{\gamma_3}(p_3, q_3) = l_3/2$. If we split Y_0 along the geodesics which start orthogonally to γ_2 in p_2 and q_2, and to γ_3 in q_3, we obtain two isometric right-angled hexagons H_1, H_2. Each H has three alternate sides with lengths $l_1/2, l_2/2, l_3/2$.

We consider the locally geodesic bigon γ_2 in S with vertices $\{p_2, q_2\}$. We prove now that this bigon is $(1, L_1)$-quasigeodesic in S.

Since H_1 and H_2 are isometric and γ_2, γ_3 are outer loops in S, if a geodesic in S joining p_2 with q_2 is not contained in γ_2, then it must join p_2 with γ_1. By Lemma C we only need to prove that $l_2/2 \leq d_S(p_2, q_2) + L_1$. We denote by B the opposite side to $[p_3, q_3]$ and by z' the point $z' := B \cap \gamma_1$. Choose the point $z_0 \in \gamma_1$ with $d_{H_1}(p_2, z_0) = d_{H_1}(p_2, \gamma_1)$. Let us consider the right-angled quadrilateral $\{p_2, q_2, z', z_0\}$ in H_1. If $L(B) \geq l_1/2$, then $d_{H_1}(z', z_0) \leq L(B)$, and hyperbolic trigonometry gives $l_2/2 \leq d_{H_1}(p_2, z_0) = d_{H_1}(p_2, \gamma_1)$; hence, $\gamma_2 \cap H_1$ is a geodesic in S and $l_2/2 = d_S(p_2, q_2)$. If $d_S(p_2, q_2) < l_2/2$, then $d_S(p_2, q_2) > d_{H_1}(p_2, \gamma_1)$, and consequently $L(B) < l_1/2$. Hence triangle inequality implies that

$$l_2/2 \leq d_{H_1}(p_2, z_0) + d_{H_1}(z_0, z') + L(B) < d_{H_1}(p_2, \gamma_1) + L_1/2 + L_1/2 < d_S(p_2, q_2) + L_1.$$
Now we study the thin constant of the \((1, L_1)\)-quasigeodesic bigon.

Let us choose the point \(z \in \gamma_2 \cap H_1\) such that \(d_{H_1}(z, p_2) = d_{H_1}(z, q_2) = l_2/4\). Let us consider the point \(z'' \in \gamma_1\) with \(d_{H_1}(z, z'') = d_{H_1}(z, \gamma_1)\).

Considering the right-angled triangle \([z, q_2, z']\) in \(H_1\) we obtain \(d_{H_1}(z, z') \geq d_{H_1}(z, q_2) = l_2/4\). Hence, \(d_{H_1}(z, \gamma_1) = d_{H_1}(z, z'') \geq d_{H_1}(z, z') - d_{H_1}(z', z'') \geq l_2/4 - l_1/2 \geq L_2/4 - L_1/2\).

We deal now with a bound of \(d_{H_1}(z, A)\), where \(A\) is the opposite side to \([p_2, q_2]\) in \(H_1\).

Standard hyperbolic trigonometry (see e.g. [B, p. 161]) gives

\[
\cosh s = \frac{\cosh(l_1/2) + \cosh(l_2/2) \cosh(l_3/2)}{\sinh(l_2/2) \sinh(l_3/2)} \geq \frac{\cosh(l_1/2) \cosh(l_3/2)}{\sinh(l_2/2) \sinh(l_3/2)}.
\]

Let us consider the geodesic \(\gamma_0\) which gives the distance in \(H_1\) between \([p_2, q_2]\) and \(A\); we define \(x := \gamma_0 \cap [p_2, q_2]\) and \(y := \gamma_0 \cap A\). The geodesic \(\gamma_0\) splits \(H_1\) into two right-angled pentagons. Hyperbolic trigonometry for pentagons (see e.g. [B, p. 159]) gives \(\cosh L(\gamma_0) = \sinh s \sinh(l_3/2)\). Then

\[
cosh^2 L(\gamma_0) = \sinh^2 s \sinh^2(l_3/2) \geq (\cosh^2(l_2/2) \cosh^2(l_3/2) - 1) \sinh^2(l_3/2)
\]

\[
\geq ((1 + 2e^{-l_2})^2(1 + 2e^{-l_3})^2 - 1) \sinh^2(l_3/2)
\]

\[
\geq (4e^{-l_2} + 4e^{-l_3}) \frac{e^{l_3} - 2}{4} = (e^{-l_2} + e^{-l_3})(e^{l_3} - 2)
\]

\[
= 1 + e^{l_3 - l_2} - 2(e^{-l_2} + e^{-l_3}).
\]

Hence, \(\cosh^2 L(\gamma_0) \geq 1 - 4e^{-l_2}\). Without loss of generality we can assume that \(L_2 > 2\log 2\) (and then \(1 - 4e^{-l_2} > 0\)), since the conclusion of the theorem deals with the limit as \(L_2\) tends to infinity.

Hyperbolic trigonometry for pentagons gives \(\sinh d_{H_1}(x, q_2) \sinh L(\gamma_0) = \cosh(l_1/2)\), and consequently

\[
\sinh d_{H_1}(x, q_2) = \frac{\cosh(l_1/2)}{\sinh L(\gamma_0)} \leq \frac{\cosh(l_1/2)}{\sqrt{1 - 4e^{-l_2}}},
\]

Let \(\sigma\) be the geodesic in \(H_1\) joining \(z\) with \(A\), and such that \(L(\sigma) = d_{H_1}(z, A)\). If \(u := \sigma \cap A\), the hyperbolic trigonometry for the right-angled quadrilateral \([z, u, y, x]\) gives \(\sinh d_{H_1}(z, A) = \sinh L(\gamma_0) \cosh d_{H_1}(x, z)\). We have

\[
\frac{1}{4} e^{2d_{H_1}(x, q_2)} \leq \cosh^2 d_{H_1}(x, q_2) \leq \frac{\cosh^2 (L_1/2)}{1 - 4e^{-L_2}} - 1 \leq \frac{\sinh^2 (L_1/2) + 4e^{-L_2}}{1 - 4e^{-L_2}},
\]

\[
e^{-d_{H_1}(x, q_2)} \geq \frac{1}{2} \sqrt{\frac{1 - 4e^{-L_2}}{\sinh^2 (L_1/2) + 4e^{-L_2}}} \geq \frac{1}{2} \frac{\sqrt{1 - 4e^{-L_2}}}{\sinh(L_1/2) + 2e^{-L_2/2}}.
\]

Consequently, we obtain

\[
\sinh d_{H_1}(z, A) = \sinh L(\gamma_0) \cosh d_{H_1}(x, z) = \sinh L(\gamma_0) \cosh(l_2/4 - d_{H_1}(x, q_2))
\]

\[
\geq \sqrt{1 - 4e^{-L_2}} \frac{1}{2} \frac{e^{l_2/4 - d_{H_1}(x, q_2)}}{4} \frac{1 - 4e^{-L_2}}{\sinh(L_1/2) + 2e^{-L_2/2}}.
\]

Since \(\text{Arcsinh } t \geq \log(2t)\), we deduce

\[
d_{H_1}(z, A) \geq \log \left(2 \frac{e^{l_2/4}}{4} \frac{1 - 4e^{-L_2}}{\sinh(L_1/2) + 2e^{-L_2/2}}\right) = \frac{L_2}{4} - \log \left(2 \frac{\sinh(L_1/2) + 4e^{-L_2/2}}{1 - 4e^{-L_2}}\right).
\]
Let us consider a geodesic \(\eta \) in \(S \) joining \(z \) with \(\gamma_2 \cap H_2 \) such that \(L(\eta) = d_{S}(z, \gamma_2 \cap H_2) \). Since \(\gamma_2, \gamma_3 \) are outer loops in \(S \), if \(\eta \) is not contained in \(\gamma_2 \), then it must intersect \(A \) or \(\gamma_1 \). Consequently, using Lemma A,

\[
K(\delta, 1, L_1) \geq d_{S}(z, \gamma_2 \cap H_2) \geq \min \left\{ \frac{L_2}{4} - \frac{L_1}{2}, \frac{L_2}{4} - \log \left(\frac{2 \sinh(L_1/2) + 4e^{-L_2/2}}{1 - 4e^{-L_2}} \right) \right\} = \frac{L_2}{4} - \max \left\{ \frac{L_1}{2}, \log \left(\frac{2 \sinh(L_1/2) + 4e^{-L_2/2}}{1 - 4e^{-L_2}} \right) \right\} =: E(L_1, L_2).
\]

Let us fix \(L_1 \). Since \(K(\delta, 1, L_1) = 4\delta + 2H(\delta, 1, L_1) \) is an increasing function of \(\delta \), we can consider its inverse function \(F(t, L_1) \). Then \(\delta \geq D(L_1, L_2) := F(E(L_1, L_2), L_1) \).

We have that \(\lim_{\delta \to \infty} K(\delta, 1, L_1) = \infty \), since \(K(\delta, 1, L_1) = 4\delta + 2H(\delta, 1, L_1) \). It is clear that \(\lim_{L_2 \to \infty} E(L_1, L_2) = \infty \) and \(\lim_{t \to \infty} F(t, L_1) = \infty \), for any fixed \(L_1 \). Hence, \(\lim_{L_2 \to \infty} D(L_1, L_2) = \infty \) for any fixed \(L_1 \). □

Corollary 5.5. Let us consider \(L_1, L_2 > 0 \) and \(S \) a triply connected bordered non-exceptional Riemann surface such that \(OS \) contains a simple closed curve \(g_1 \) with \(L(\gamma_1) \leq L_1 \). Let us assume also that \(S \) contains two simple closed geodesics \(\gamma_2, \gamma_3 \) not freely homotopic to \(g_1 \) with \(L(\gamma_2), L(\gamma_3) \geq L_2 \). Then the sharp hyperbolicity constant \(\delta \) of \(S \) satisfies \(\delta \geq \Lambda(L_1, L_2) \), where \(\lim_{L_2 \to \infty} \Lambda(L_1, L_2) = \infty \), for any fixed \(L_1 \).

Proof. Let us denote by \(M(L_1, L_2) \) the set of Riemann surfaces verifying the hypotheses of Corollary 5.5. We define \(\Lambda(L_1, L_2) \) as the infimum of the hyperbolicity constants of the surfaces \(S \in M(L_1, L_2) \).

Let us assume that the conclusion of Corollary 5.5 does not hold. Since \(\Lambda(L_1, L_2) \) is a non-decreasing function in \(L_2 \), there exists some constant \(c_1 \) such that \(\Lambda(L_1, L_2) < c_1 \) for some fixed \(L_1 \) and for every \(L_2 \). For this \(L_1 \) and for each \(L_2 \) we can take \(S \in M(L_1, L_2) \) with \(\delta(S) \leq c_1 \). Such surface \(S \) is contained in some triply connected non-exceptional Riemann surface \(R \) with simple closed geodesics \(\gamma_1, \gamma_2, \gamma_3 \) such that \(\gamma_1 \) is freely homotopic to \(g_1 \) (\(\gamma_1 \) can be a puncture) and \(\partial R = \partial S \setminus \{ g_1 \} \); therefore \(L(\gamma_1) \leq L(g_1) \leq L_1 \). It is clear that \(\gamma_2, \gamma_3 \) are outer loops in \(R \).

Consider the doubly connected bordered non-exceptional Riemann surface \(S_0 \) defined as the closure of \(R \setminus S \); we have \(S \cup S_0 = R \) and \(S \cap S_0 = \partial S_0 = g_1 \). We obtain \(\delta(S_0) \leq c_2 \) from Theorem 5.3. Since \(S, S_0 \) is a \((L_1, 0, 0)\)-tree-decomposition of \(R \), Theorem D gives \(\delta(R) \leq c_3 \). This fact is a contradiction with Theorem 5.6, since \(\delta(R) \geq D(L_1, L_2) \). □

References.

